Fabrication of High-Aspect-Ratio Cylindrical Micro-Structures Based on Electroactive Ionogel/Gold Nanocomposite
We present a fabrication process to realize 3D high-aspect-ratio cylindrical micro-structures of soft ionogel/gold nanocomposites by combining replica molding and Supersonic Cluster Beam Deposition (SCBD). Cylinders’ metallic masters (0.5 mm in diameter) are used to fabricate polydimethylsiloxane (PDMS) molds, where the ionogel is casted and UV cured. The replicated ionogel cylinders (aspect ratio > 20) are subsequently metallized through SCBD to integrate nanostructured gold electrodes (150 nm thick) into the polymer. Nanocomposite thin films are characterized in terms of electrochemical properties, exhibiting large double layer capacitance (24 μF/cm2) and suitable ionic conductivity (0.05 mS/cm) for charge transport across the network. Preliminary actuation tests show that the nanocomposite is able to respond to low intensity electric fields (applied voltage from 2.5 V to 5 V), with potential applications for the development of artificial smart micro-structures with motility behavior inspired by that of natural ciliate systems.