scholarly journals Cold and Dense Plasma Sheet Caused by Solar Wind Entry: Direct Evidence

Atmosphere ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 831
Author(s):  
Yue Yu ◽  
Zuzheng Chen ◽  
Fang Chen

We present a coordinated observation with the Magnetospheric Multiscale (MMS) mission, located in the Earth’s magnetotail plasma sheet, and the Acceleration, Reconnection, Turbulence, and Electrodynamics of the Moon’s Interaction with the Sun (ARTEMIS) mission, located in the solar wind, in order to understand the formation mechanism of the cold and dense plasma sheet (CDPS). MMS detected two CDPSs composed of two ion populations with different energies, where the energy of the cold ion population is the same as that of the solar wind measured by ARTEMIS. This feature directly indicates that the CDPSs are caused by the solar wind entry. In addition, He+ was observed in the CDPSs. The plasma density in these two CDPSs are ~1.8 cm−3 and ~10 cm−3, respectively, roughly 4–30 times the average value of a plasma sheet. We performed a cross-correlation analysis on the ion density of the CDPS and the solar wind, and we found that it takes 3.7–5.9 h for the solar wind to enter the plasma sheet. Such a coordinated observation confirms the previous speculation based on single-spacecraft measurements.

2020 ◽  
Author(s):  
Lun Xie ◽  
Ying Xiong ◽  
Suiyan Fu ◽  
Zuyin Pu

<p>Electron pitch angle distribution (PAD) is a critical parameter in the study of the dynamics of the radiation belt electrons. It is well known that solar wind pressure has an impact on the PAD of the geomagnetically trapped electrons. Using the Van Allen Probes' data, we find that the MeV electron PAD at 4.5<L*<5.5 became narrowing (PAD is mainly concentrated at 90 degree) for over three days during a prolonged enhancement of the solar wind number density on November 27-30, 2015. During that period, the EMIC waves are observed by Van Allen Probe-A and ground stations on the afternoon and dusk MLTs at L>4. Meanwile, the precipitations of tens of keV protons and MeV electrons are observed by POES satellites. Additionally, there is a growing dip in electron phase space density at L*~5, indicating a local loss caused by the wave-particle interaction. The narrowing of the electron PAD is energy-dependent and the PAD is more anisotropic for electrons with higher energy, which is consistent with the wave-particle interaction with the EMIC waves. Furthermore, previous studies have shown that high solar wind density can lead to a hot and dense plasma sheet. The inward penetration of a dense plasma-sheet down to 4 Re has been confirmed by THEMIS spacecraft. We suggest that the overlap of the plasma sheet and the plasmasphere provide a favorable condition for exciting EMIC waves and the loss of small pitch angle electrons by EMIC waves can lead to the electron PAD narrowing. </p><div> </div>


2014 ◽  
Vol 184 (1-4) ◽  
pp. 33-86 ◽  
Author(s):  
S. Wing ◽  
J. R. Johnson ◽  
C. C. Chaston ◽  
M. Echim ◽  
C. P. Escoubet ◽  
...  

2020 ◽  
Vol 6 (2) ◽  
pp. 104-112
Author(s):  
P. Poudel ◽  
N. Parajuli ◽  
A. Gautam ◽  
D. Sapkota ◽  
H. Adhikari ◽  
...  

The Geostationary Operational Environmental Satellites (GOES) have been monitoring the Earth's radiation environment and is providing the electron flux data (of energy >0.8 MeV, >2 MeV, and >4 MeV) by means of a connected sensor subsystem. Relativistic electron flux is one of the components of the radiation belt which not only affects the electrical system in satellites but also has an impact on Earth’s upper atmospheric climatic variation. We have carried out a study to determine the relation of sunspot number (R), solar flux (F10.7), and solar wind parameters i.e., solar wind velocity (Vsw), plasma density Nsw), the southern component of the interplanetary magnetic field (IMF-Bz), Plasma temperature (Tsw) with relativistic electron flux of energy >0.8 MeV, >2 MeV, and >4 MeV in outer radiation belt using the data of 24 years (1996-2020) covering solar cycle 23 and 24. Time series analysis, Cross-correlation and wavelet analysis techniques have been used in this study. The time series plot displayed that the radiation is occupied mostly by electron flux of energy less than 4 Mev and solar cycle 23 (1996-2008) was strong to produce more intensity of relativistic electron flux of all energy in comparison to cycle 24 (2008-2019). Results from cross-correlation analysis illustrated that Bz has no significant impact on the enhancement of relativistic electron flux of any energy range in the radiation belt. Whereas other studied parameters have a positive correlation with relativistic electron flux, but with significantly different coefficient values for different energy. We found that electron flux >0.8 MeV and >2 MeV has a strong positive association with sunspot number, solar flux, solar wind velocity, plasma density and temperature whereas weak correlation with electron flux of energy >4 MeV. This result leads us to conclude that solar activity and solar parameters have greater influence in producing relativistic electron flux of energy ~ 0.8-4 MeV, than of flux > 4 MeV. The study made to observe the distribution of relativistic electrons in radiation belt with time through continuous wavelet analysis showed that electron flux of energy >0.8 has a higher periodicity in comparison to the flux of other energy ranger.


2019 ◽  
Vol 11 (1) ◽  
pp. 01025-1-01025-5 ◽  
Author(s):  
N. A. Borodulya ◽  
◽  
R. O. Rezaev ◽  
S. G. Chistyakov ◽  
E. I. Smirnova ◽  
...  

Sensors ◽  
2018 ◽  
Vol 18 (5) ◽  
pp. 1571 ◽  
Author(s):  
Jhonatan Camacho Navarro ◽  
Magda Ruiz ◽  
Rodolfo Villamizar ◽  
Luis Mujica ◽  
Jabid Quiroga

2010 ◽  
Vol 09 (02) ◽  
pp. 203-217 ◽  
Author(s):  
XIAOJUN ZHAO ◽  
PENGJIAN SHANG ◽  
YULEI PANG

This paper reports the statistics of extreme values and positions of extreme events in Chinese stock markets. An extreme event is defined as the event exceeding a certain threshold of normalized logarithmic return. Extreme values follow a piecewise function or a power law distribution determined by the threshold due to a crossover. Extreme positions are studied by return intervals of extreme events, and it is found that return intervals yield a stretched exponential function. According to correlation analysis, extreme values and return intervals are weakly correlated and the correlation decreases with increasing threshold. No long-term cross-correlation exists by using the detrended cross-correlation analysis (DCCA) method. We successfully introduce a modification specific to the correlation and derive the joint cumulative distribution of extreme values and return intervals at 95% confidence level.


Sign in / Sign up

Export Citation Format

Share Document