scholarly journals Analysis of the ETNA 2015 Eruption Using WRF–Chem Model and Satellite Observations

Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1168
Author(s):  
Umberto Rizza ◽  
Eleonora Brega ◽  
Maria Teresa Caccamo ◽  
Giuseppe Castorina ◽  
Mauro Morichetti ◽  
...  

The aim of the present work is to utilize a new functionality within the Weather Research and Forecasting model coupled with Chemistry (WRF–Chem) that allows simulating emission, transport, and settling of pollutants released during the Etna 2015 volcanic activities. This study constitutes the first systematic application of the WRF–Chem online-based approach to a specific Etna volcanic eruption, with possible effects involving the whole Mediterranean area. In this context, the attention has been focused on the eruption event, recorded from 3–7 December 2015, which led to the closure of the nearby Catania International Airport. Quantitative meteorological forecasts, analyses of Etna volcanic ash transport, and estimates of the ash ground deposition have been performed. In order to test the performance of the proposed approach, the model outputs have been compared with data provided by satellite sensors and Doppler radars. As a result, it emerges that, as far as the selected eruption event is concerned, the WRF–Chem model reasonably reproduces the distribution of SO2 and of volcanic ash. In addition, this modeling system may provide valuable support both to airport management and to local stakeholders including public administrations.

Atmosphere ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 425 ◽  
Author(s):  
Markos Mylonas ◽  
Kostas Douvis ◽  
Iliana Polychroni ◽  
Nadia Politi ◽  
Panagiotis Nastos

Due to their rarity and intensity, Mediterranean Tropical-Like Cyclones (TLCs; also known as medicanes) have been a subject of study over the last decades and lately the interest has undoubtedly grown. The current study investigates a well-documented TLC event crossed south Sicily on November 7–8, 2014 and the added value of higher spatial horizontal resolution through a physics parameterization sensitivity analysis. For this purpose, Weather Research and Forecasting model (version 3.9) is used to dynamically downscale ECMWF Re-Analysis (version 5) (ERA5) reanalysis 31 km spatial resolution to 16 km and 4 km, as parent and inner domain, respectively. In order to increase the variability and disparity of the results, spectral nudging was implemented on both domains and the outputs were compared against satellite observations and ground-based stations. Although, the study produces mixed results, there is a clear indication that the increase of resolution benefits specific aspects of the cyclone, while it deteriorates others, based on both ground and upper air analyses. The sensitivity of the parent domain displays an overall weak variability while the simulations demonstrate a positive time-lag predicting a less symmetric cyclone with weak warm core. On the contrary, inner domain analysis shows stronger variability between the model simulations reproducing more distinct clear tropical characteristics with less delayed TLC development for most of the experiments.


2010 ◽  
Vol 198 (1-2) ◽  
pp. 76-80
Author(s):  
Catherine F. Cahill ◽  
Peter G. Rinkleff ◽  
Jonathan Dehn ◽  
Peter W. Webley ◽  
Thomas A. Cahill ◽  
...  

Author(s):  
Alessio Golzio ◽  
Silvia Ferrarese ◽  
Claudio Cassardo ◽  
Gugliemina Adele Diolaiuti ◽  
Manuela Pelfini

AbstractWeather forecasts over mountainous terrain are challenging due to the complex topography that is necessarily smoothed by actual local-area models. As complex mountainous territories represent 20% of the Earth’s surface, accurate forecasts and the numerical resolution of the interaction between the surface and the atmospheric boundary layer are crucial. We present an assessment of the Weather Research and Forecasting model with two different grid spacings (1 km and 0.5 km), using two topography datasets (NASA Shuttle Radar Topography Mission and Global Multi-resolution Terrain Elevation Data 2010, digital elevation models) and four land-cover-description datasets (Corine Land Cover, U.S. Geological Survey land-use, MODIS30 and MODIS15, Moderate Resolution Imaging Spectroradiometer land-use). We investigate the Ortles Cevadale region in the Rhaetian Alps (central Italian Alps), focusing on the upper Forni Glacier proglacial area, where a micrometeorological station operated from 28 August to 11 September 2017. The simulation outputs are compared with observations at this micrometeorological station and four other weather stations distributed around the Forni Glacier with respect to the latent heat, sensible heat and ground heat fluxes, mixing-layer height, soil moisture, 2-m air temperature, and 10-m wind speed. The different model runs make it possible to isolate the contributions of land use, topography, grid spacing, and boundary-layer parametrizations. Among the considered factors, land use proves to have the most significant impact on results.


2021 ◽  
Vol 83 (2) ◽  
Author(s):  
S. Engwell ◽  
L. Mastin ◽  
A. Tupper ◽  
J. Kibler ◽  
P. Acethorp ◽  
...  

AbstractUnderstanding the location, intensity, and likely duration of volcanic hazards is key to reducing risk from volcanic eruptions. Here, we use a novel near-real-time dataset comprising Volcanic Ash Advisories (VAAs) issued over 10 years to investigate global rates and durations of explosive volcanic activity. The VAAs were collected from the nine Volcanic Ash Advisory Centres (VAACs) worldwide. Information extracted allowed analysis of the frequency and type of explosive behaviour, including analysis of key eruption source parameters (ESPs) such as volcanic cloud height and duration. The results reflect changes in the VAA reporting process, data sources, and volcanic activity through time. The data show an increase in the number of VAAs issued since 2015 that cannot be directly correlated to an increase in volcanic activity. Instead, many represent increased observations, including improved capability to detect low- to mid-level volcanic clouds (FL101–FL200, 3–6 km asl), by higher temporal, spatial, and spectral resolution satellite sensors. Comparison of ESP data extracted from the VAAs with the Mastin et al. (J Volcanol Geotherm Res 186:10–21, 2009a) database shows that traditional assumptions used in the classification of volcanoes could be much simplified for operational use. The analysis highlights the VAA data as an exceptional resource documenting global volcanic activity on timescales that complement more widely used eruption datasets.


2014 ◽  
Vol 31 (9) ◽  
pp. 2008-2014 ◽  
Author(s):  
Xin Zhang ◽  
Ying-Hwa Kuo ◽  
Shu-Ya Chen ◽  
Xiang-Yu Huang ◽  
Ling-Feng Hsiao

Abstract The nonlocal excess phase observation operator for assimilating the global positioning system (GPS) radio occultation (RO) sounding data has been proven by some research papers to produce significantly better analyses for numerical weather prediction (NWP) compared to the local refractivity observation operator. However, the high computational cost and the difficulties in parallelization associated with the nonlocal GPS RO operator deter its application in research and operational NWP practices. In this article, two strategies are designed and implemented in the data assimilation system for the Weather Research and Forecasting Model to demonstrate the capability of parallel assimilation of GPS RO profiles with the nonlocal excess phase observation operator. In particular, to solve the parallel load imbalance problem due to the uneven geographic distribution of the GPS RO observations, round-robin scheduling is adopted to distribute GPS RO observations among the processing cores to balance the workload. The wall clock time required to complete a five-iteration minimization on a demonstration Antarctic case with 106 GPS RO observations is reduced from more than 3.5 h with a single processing core to 2.5 min with 106 processing cores. These strategies present the possibility of application of the nonlocal GPS RO excess phase observation operator in operational data assimilation systems with a cutoff time limit.


Author(s):  
Reneta Dimitrova ◽  
Ashish Sharma ◽  
Harindra J. S. Fernando ◽  
Ismail Gultepe ◽  
Ventsislav Danchovski ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document