scholarly journals Impacts of UV Irradiance and Medium-Energy Electron Precipitation on the North Atlantic Oscillation during the 11-Year Solar Cycle

Atmosphere ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 1029
Author(s):  
Sigmund Guttu ◽  
Yvan Orsolini ◽  
Frode Stordal ◽  
Odd Helge Otterå ◽  
Nour-Eddine Omrani ◽  
...  

Observational studies suggest that part of the North Atlantic Oscillation (NAO) variability may be attributed to the spectral ultra-violet (UV) irradiance variations associated to the 11-year solar cycle. The observed maximum surface pressure response in the North Atlantic occurs 2–4 years after solar maximum, and some model studies have identified that atmosphere–ocean feedbacks explain the multi-year lag. Alternatively, medium-to-high energy electron (MEE) precipitation, which peaks in the declining phase of the solar cycle, has been suggested as a potential cause of this lag. We use a coupled (ocean–atmosphere) climate prediction model and a state-of-the-art MEE forcing to explore the respective roles of irradiance and MEE precipitation on the NAO variability. Three decadal ensemble experiments were conducted over solar cycle 23 in an idealized setting. We found a weak ensemble-mean positive NAO response to the irradiance. The simulated signal-to-noise ratio remained very small, indicating the predominance of internal NAO variability. The lack of multi-annual lag in the NAO response was likely due to lagged solar signals imprinted in temperatures below the oceanic mixed-layer re-emerging equatorward of the oceanic frontal zones, which anchor ocean–atmosphere feedbacks. While there is a clear, yet weak, signature from UV irradiance in the atmosphere and upper ocean over the North Atlantic, enhanced MEE precipitation on the other hand does not lead to any systematic changes in the stratospheric circulation, despite its marked chemical signatures.

Author(s):  
Yuhji Kuroda ◽  
Kunihiko Kodera ◽  
Kohei Yoshida ◽  
Seiji Yukimoto ◽  
Lesley Gray

2000 ◽  
Vol 18 (2) ◽  
pp. 247-251 ◽  
Author(s):  
R. García ◽  
P. Ribera ◽  
L. Gimenoo ◽  
E. Hernández

Abstract. The North Atlantic Oscillation (NAO) and the Southern Oscillation (SO) are compared from the standpoint of a possible common temporal scale of oscillation. To do this a cross-spectrum of the temporal series of NAO and SO indices was determined, finding a significant common oscillation of 6-8 years. To assure this finding, both series were decomposed in their main oscillations using singular spectrum analysis (SSA). Resulting reconstructed series of 6-8 years oscillation were then cross-correlated without and with pre-whitened, the latter being significant. The main conclusion is a possible relationship between a common oscillation of 6-8 years' that represents about 20% of the SO variance and about 25% of the NAO variance.Key words: Meteorology and atmospheric dynamics (climatology; ocean-atmosphere interactions)


2019 ◽  
Vol 12 (2) ◽  
pp. 94-99 ◽  
Author(s):  
Gabriel Chiodo ◽  
Jessica Oehrlein ◽  
Lorenzo M. Polvani ◽  
John C. Fyfe ◽  
Anne K. Smith

Sign in / Sign up

Export Citation Format

Share Document