scholarly journals Robust Mixture Modeling Based on Two-Piece Scale Mixtures of Normal Family

Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 38 ◽  
Author(s):  
Mohsen Maleki ◽  
Javier Contreras-Reyes ◽  
Mohammad Mahmoudi

In this paper, we examine the finite mixture (FM) model with a flexible class of two-piece distributions based on the scale mixtures of normal (TP-SMN) family components. This family allows the development of a robust estimation of FM models. The TP-SMN is a rich class of distributions that covers symmetric/asymmetric and light/heavy tailed distributions. It represents an alternative family to the well-known scale mixtures of the skew normal (SMSN) family studied by Branco and Dey (2001). Also, the TP-SMN covers the SMN (normal, t, slash, and contaminated normal distributions) as the symmetric members and two-piece versions of them as asymmetric members. A key feature of this study is using a suitable hierarchical representation of the family to obtain maximum likelihood estimates of model parameters via an EM-type algorithm. The performances of the proposed robust model are demonstrated using simulated and real data, and then compared to other finite mixture of SMSN models.

2020 ◽  
Vol 9 (1) ◽  
pp. 61-81
Author(s):  
Lazhar BENKHELIFA

A new lifetime model, with four positive parameters, called the Weibull Birnbaum-Saunders distribution is proposed. The proposed model extends the Birnbaum-Saunders distribution and provides great flexibility in modeling data in practice. Some mathematical properties of the new distribution are obtained including expansions for the cumulative and density functions, moments, generating function, mean deviations, order statistics and reliability. Estimation of the model parameters is carried out by the maximum likelihood estimation method. A simulation study is presented to show the performance of the maximum likelihood estimates of the model parameters. The flexibility of the new model is examined by applying it to two real data sets.


2019 ◽  
Vol 7 (1) ◽  
pp. 394-417
Author(s):  
Aboubacrène Ag Ahmad ◽  
El Hadji Deme ◽  
Aliou Diop ◽  
Stéphane Girard

AbstractWe introduce a location-scale model for conditional heavy-tailed distributions when the covariate is deterministic. First, nonparametric estimators of the location and scale functions are introduced. Second, an estimator of the conditional extreme-value index is derived. The asymptotic properties of the estimators are established under mild assumptions and their finite sample properties are illustrated both on simulated and real data.


Mathematics ◽  
2020 ◽  
Vol 8 (10) ◽  
pp. 1786 ◽  
Author(s):  
A. M. Abd El-Raheem ◽  
M. H. Abu-Moussa ◽  
Marwa M. Mohie El-Din ◽  
E. H. Hafez

In this article, a progressive-stress accelerated life test (ALT) that is based on progressive type-II censoring is studied. The cumulative exposure model is used when the lifetime of test units follows Pareto-IV distribution. Different estimates as the maximum likelihood estimates (MLEs) and Bayes estimates (BEs) for the model parameters are discussed. Bayesian estimates are derived while using the Tierney and Kadane (TK) approximation method and the importance sampling method. The asymptotic and bootstrap confidence intervals (CIs) of the parameters are constructed. A real data set is analyzed in order to clarify the methods proposed through this paper. Two types of the progressive-stress tests, the simple ramp-stress test and multiple ramp-stress test, are compared through the simulation study. Finally, some interesting conclusions are drawn.


2016 ◽  
Vol 5 (3) ◽  
pp. 9 ◽  
Author(s):  
Elizabeth M. Hashimoto ◽  
Gauss M. Cordeiro ◽  
Edwin M.M. Ortega ◽  
G.G. Hamedani

We propose and study a new log-gamma Weibull regression model. We obtain explicit expressions for the raw and incomplete moments, quantile and generating functions and mean deviations of the log-gamma Weibull distribution. We demonstrate that the new regression model can be applied to censored data since it represents a parametric family of models which includes as sub-models several widely-known regression models and therefore can be used more effectively in the analysis of survival data. We obtain the maximum likelihood estimates of the model parameters by considering censored data and evaluate local influence on the estimates of the parameters by taking different perturbation schemes. Some global-influence measurements are also investigated. Further, for different parameter settings, sample sizes and censoring percentages, various simulations are performed. In addition, the empirical distribution of some modified residuals are displayed and compared with the standard normal distribution. These studies suggest that the residual analysis usually performed in normal linear regression models can be extended to a modified deviance residual in the proposed regression model applied to censored data. We demonstrate that our extended regression model is very useful to the analysis of real data and may give more realistic fits than other special regression models. 


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Marcelo Bourguignon ◽  
Indranil Ghosh ◽  
Gauss M. Cordeiro

The transmuted family of distributions has been receiving increased attention over the last few years. For a baselineGdistribution, we derive a simple representation for the transmuted-Gfamily density function as a linear mixture of theGand exponentiated-Gdensities. We investigate the asymptotes and shapes and obtain explicit expressions for the ordinary and incomplete moments, quantile and generating functions, mean deviations, Rényi and Shannon entropies, and order statistics and their moments. We estimate the model parameters of the family by the method of maximum likelihood. We prove empirically the flexibility of the proposed model by means of an application to a real data set.


1987 ◽  
Vol 12 (1) ◽  
pp. 45-61 ◽  
Author(s):  
Stephen F. Olejnik ◽  
James Algina

Estimated Type I error rates and power are reported for the Brown-Forsythe, O’Brien, Klotz, and Siegel-Tukey procedures. The effect of aligning the data, by using deviations from group means or group medians, is investigated for the latter two tests. Normal and non-normal distributions, equal and unequal sample-size combinations, and equal and unequal means are investigated for a two-group design. No test is robust and most powerful for all distributions, however, using O’Brien’s procedure will avoid the possibility of a liberal test and provide power almost as large as what would be provided by choosing the most powerful test for each distribution type. Using the Brown-Forsythe procedure with heavy-tailed distributions and O’Brien’s procedure for other distributions will increase power modestly and maintain robustness. Using the mean-aligned Klotz test or the unaligned Klotz test with appropriate distributions can increase power, but only at the risk of increased Type I error rates if the tests are not accurately matched to the distribution type.


2020 ◽  
Vol 8 (1) ◽  
pp. 17-35
Author(s):  
Hamid Esmaeili ◽  
Fazlollah Lak ◽  
Emrah Altun

This paper investigates general mathematical properties of a new generator of continuous distributions with two extra parameter called the Ristic-Balakrishnan odd log-logistic family of distributions. We present some special models and investigate the asymptotes. The new density function can be expressed as a linear combination of exponentiated densities based on the same baseline distribution. Explicit expressions for the ordinary and incomplete moments, generating functions and order statistics, which hold for any baseline model, are determined. Further, we discuss the estimation of the model parameters by maximum likelihood and present a simulation study based on maximum likelihood estimation. A regression model based on proposed model was introduced. Finally, three applications to real data were provided to illustrate the potentiality of the family of distributions.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Mi Zichuan ◽  
Saddam Hussain ◽  
Anum Iftikhar ◽  
Muhammad Ilyas ◽  
Zubair Ahmad ◽  
...  

During the past couple of years, statistical distributions have been widely used in applied areas such as reliability engineering, medical, and financial sciences. In this context, we come across a diverse range of statistical distributions for modeling heavy tailed data sets. Well-known distributions are log-normal, log-t, various versions of Pareto, log-logistic, Weibull, gamma, exponential, Rayleigh and its variants, and generalized beta of the second kind distributions, among others. In this paper, we try to supplement the distribution theory literature by incorporating a new model, called a new extended Weibull distribution. The proposed distribution is very flexible and exhibits desirable properties. Maximum likelihood estimators of the model parameters are obtained, and a Monte Carlo simulation study is conducted to assess the behavior of these estimators. Finally, we provide a comparative study of the newly proposed and some other existing methods via analyzing three real data sets from different disciplines such as reliability engineering, medical, and financial sciences. It has been observed that the proposed method outclasses well-known distributions on the basis of model selection criteria.


Sign in / Sign up

Export Citation Format

Share Document