scholarly journals Generalized Hyers–Ulam Stability of the Additive Functional Equation

Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 76 ◽  
Author(s):  
Yang-Hi Lee ◽  
Gwang Kim

We will prove the generalized Hyers–Ulam stability and the hyperstability of the additive functional equation f(x1 + y1, x2 + y2, …, xn + yn) = f(x1, x2, … xn) + f(y1, y2, …, yn). By restricting the domain of a mapping f that satisfies the inequality condition used in the assumption part of the stability theorem, we partially generalize the results of the stability theorems of the additive function equations.

2003 ◽  
Vol 2003 (1) ◽  
pp. 15-26 ◽  
Author(s):  
Soon-Mo Jung ◽  
Byungbae Kim

The main purpose of this paper is to prove the Hyers-Ulam stability of the additive functional equation for a large class of unbounded domains. Furthermore, by using the theorem, we prove the stability of Jensen's functional equation for a large class of restricted domains.


2013 ◽  
Vol 2013 ◽  
pp. 1-5
Author(s):  
Seong Sik Kim ◽  
Ga Ya Kim ◽  
Soo Hwan Kim

We investigate new generalized Hyers-Ulam stability results for -derivations and Lie -algebra homomorphisms on Lie -algebras associated with the additive functional equation:


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Yang-Hi Lee ◽  
Soon-Mo Jung

We prove a general uniqueness theorem that can be easily applied to the (generalized) Hyers-Ulam stability of the Cauchy additive functional equation, the quadratic functional equation, and the quadratic-additive type functional equations. This uniqueness theorem can replace the repeated proofs for uniqueness of the relevant solutions of given equations while we investigate the stability of functional equations.


2020 ◽  
Vol 5 (6) ◽  
pp. 5993-6005 ◽  
Author(s):  
K. Tamilvanan ◽  
◽  
Jung Rye Lee ◽  
Choonkil Park ◽  
◽  
...  

2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Soo Hwan Kim

We introduce real tangle and its operations, as a generalization of rational tangle and its operations, to enumerating tangles by using the calculus of continued fraction and moreover we study the analytical structure of tangles, knots, and links by using new operations between real tangles which need not have the topological structure. As applications of the analytical structure, we prove the generalized Hyers-Ulam stability of the Cauchy additive functional equation fx⊕y=fx⊕fy in tangle space which is a set of real tangles with analytic structure and describe the DNA recombination as the action of some enzymes on tangle space.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
Won-Gil Park ◽  
Jae-Hyeong Bae

We solve the bi-additive functional equationf(x+y,z−w)+f(x−y,z+w)=2f(x,z)−2f(y,w)and prove that every bi-additive Borel function is bilinear. And we investigate the stability of a bi-additive functional equation in Banach modules over a unitalC⋆-algebra.


2011 ◽  
Vol 61 (5) ◽  
Author(s):  
D. Miheţ ◽  
R. Saadati ◽  
S. Vaezpour

AbstractWe establish a stability result concerning the functional equation: $\sum\limits_{i = 1}^m {f\left( {mx_i + \sum\limits_{j = 1,j \ne i}^m {x_j } } \right) + f\left( {\sum\limits_{i = 1}^m {x_i } } \right) = 2f\left( {\sum\limits_{i = 1}^m {mx_i } } \right)} $ in a large class of complete probabilistic normed spaces, via fixed point theory.


2014 ◽  
Vol 64 (1) ◽  
Author(s):  
Dorel Miheţ ◽  
Reza Saadati

AbstractRecently, the authors [MIHEŢ, D.—SAADATI, R.—VAEZPOUR, S. M.: The stability of an additive functional equation in Menger probabilistic φ-normed spaces, Math. Slovaca 61 (2011), 817–826] considered the stability of an additive functional in Menger φ-normed spaces. In this paper, we establish some stability results concerning the cubic, quadratic and quartic functional equations in complete Menger φ-normed spaces via fixed point theory.


Sign in / Sign up

Export Citation Format

Share Document