An Efficient Multi-Scale Anchor Box Approach to Detect Partial Faces from a Video Sequence
In recent years, face detection has achieved considerable attention in the field of computer vision using traditional machine learning techniques and deep learning techniques. Deep learning is used to build the most recent and powerful face detection algorithms. However, partial face detection still remains to achieve remarkable performance. Partial faces are occluded due to hair, hat, glasses, hands, mobile phones, and side-angle-captured images. Fewer facial features can be identified from such images. In this paper, we present a deep convolutional neural network face detection method using the anchor boxes section strategy. We limited the number of anchor boxes and scales and chose only relevant to the face shape. The proposed model was trained and tested on a popular and challenging face detection benchmark dataset, i.e., Face Detection Dataset and Benchmark (FDDB), and can also detect partially covered faces with better accuracy and precision. Extensive experiments were performed, with evaluation metrics including accuracy, precision, recall, F1 score, inference time, and FPS. The results show that the proposed model is able to detect the face in the image, including occluded features, more precisely than other state-of-the-art approaches, achieving 94.8% accuracy and 98.7% precision on the FDDB dataset at 21 frames per second (FPS).