scholarly journals Review on the Lymphatic Vessels in the Dental Pulp

Biology ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 1257
Author(s):  
Kamila Wiśniewska ◽  
Zbigniew Rybak ◽  
Maria Szymonowicz ◽  
Piotr Kuropka ◽  
Maciej Dobrzyński

Despite many studies, opinions on the lymphatic system of the teeth are still incompatible. Studies using light and electron microscopy and directly using methods such as a radioisotope (radionuclide) scan and interstitial fluid pressure measurement reported incomplete results. Immunohistochemistry (IHC) plays the main role in investigating presence of the lymphatic system in dental tissues. This method uses labeled antibodies against antigens typical of lymphatic vessels. The use of appropriate staining enables the detection of antigen-antibody reaction products using a light (optical), electron or fluorescence microscope. However, these studies do not show the system of vessels, their histologic structure under physiological conditions and inflammation as well as the lymphangiogenesis process in the dental pulp. Unfortunately, there is a lack of studies associating the presence of lymphatic vessels in the dental pulp with local lymphatic nodes or large vessels outside the tooth. In the scientific and research environment, the evaluation of the lymphatic system of the teeth is problematic because it is quite difficult to clearly distinguish lymphatic vessels from small blood vessels. Despite many indications of the presence of lymphatic vessels in the pulp chamber, this problem remains open and needs further research.

2013 ◽  
Vol 30 (1) ◽  
pp. 15-19
Author(s):  
Dragica Dačić Simonović ◽  
Ljubinka Veličković Janković ◽  
Stefan Veličković ◽  
Ana Ristić Petrović ◽  
Stefan Veličković ◽  
...  

Summary During inflammation, lymphangiogenesis takes place to enhance the transport of filtered fluid, proteins, and immune cells. Dental pulp tissue is frequently exposed to inflammatory insults, but the lymphatic system of the pulp and its responses to injury have not been investigated in detail using specific lymphatic markers. The aim of this study was to evaluate and to compare the lymphatic system in health dental pulp and pulp with inflammation, and to establish whether lymphangiogenesis takes place during dental pulp inflammation. Ten pulps with irreversibile pulpitis and eleven samples of healthy dental pulps were included in this study. All pulp samples were analyzed microscopically using the standard hematoxylin-eosin (HE) staining to detect the presence of inflammation. Immunohistochemical staining was performed using monoclonal anti-CD31 antibody (DAKO) at dilution 1:20. Microvessels identified by CD31, in which lumen the red blood cells were not detected, were considered as lymph vessels. Active areas of lymphangiogenesis (“hot spots”) were selected using low magnification. Images from five high power fields in the hot spot areas were recorded for each sample. Lymph vessels were counted using ImageJ program. The total number of lymph vessels so obtained was then divided by the number of the counted hot spots, and the result was used to denote the lymph vessel density. The mean number of lymphatic vessels, detected by CD31, in the group without inflammation was significantly lower than in the group with inflammation (3.75 versus 13.58, t=7.093, p<0.001). The present study established an increased number of lymphatic vessels in the inflamed human dental pulp suggesting that inflammation contributes to lymphangiogenesis.


2018 ◽  
Vol 17 (2) ◽  
pp. 84-91 ◽  
Author(s):  
G. V. Papayan ◽  
A. L. Akopov ◽  
P. A. Antonyan ◽  
A. A. Ilin ◽  
N. N. Petrishchev

Introduction. Near infrared (NIR) fluorescent diagnostics is promising due to a deeper penetration into biological tissues. Material and methods. In experiments on rabbits and in clinical studies evaluation the lymphatic system with the use of the instrument complex FLUM-808 was analysed. Results. For visualization of the lymphatic vessels of the skin, the intradermal administration of ICG, dissolved in 20 % albumin in the order of 0.02 mg/ml, is optimal. Peritumoral injection of ICG allows visualizing sentinel lymph nodes in patients with lung cancer. Conclusions. The developed NIR fluorescence diagnostic system FLUM-808 allows to real time visualization of lymphatic vessels and lymph nodes.


2018 ◽  
Vol 314 (3) ◽  
pp. G408-G417 ◽  
Author(s):  
Sonia Rehal ◽  
Matthew Stephens ◽  
Simon Roizes ◽  
Shan Liao ◽  
Pierre-Yves von der Weid

Inflammatory bowel disease (IBD) has a complex pathophysiology with limited treatments. Structural and functional changes in the intestinal lymphatic system have been associated with the disease, with increased risk of IBD occurrence linked to a history of acute intestinal injury. To examine the potential role of the lymphatic system in inflammation recurrence, we evaluated morphological and functional changes in mouse mucosal and mesenteric lymphatic vessels, and within the mesenteric lymph nodes during acute ileitis caused by a 7-day treatment with dextran sodium sulfate (DSS). We monitored whether the changes persisted during a 14-day recovery period and determined their potential consequences on dendritic cell (DC) trafficking between the mucosa and lymphoid tissues. DSS administration was associated with marked lymphatic abnormalities and dysfunctions exemplified by lymphangiectasia and lymphangiogenesis in the ileal mucosa and mesentery, increased mesenteric lymphatic vessel leakage, and lymphadenopathy. Lymphangiogenesis and lymphadenopathy were still evident after recovery from intestinal inflammation and correlated with higher numbers of DCs in mucosal and lymphatic tissues. Specifically, a deficit in CD103+ DCs observed during acute DSS in the lamina propria was reversed and further enhanced during recovery. We concluded that an acute intestinal insult caused alterations of the mesenteric lymphatic system, including lymphangiogenesis, which persisted after resolution of inflammation. These morphological and functional changes could compromise DC function and movement, increasing susceptibility to further gastrointestinal disease. Elucidation of the changes in mesenteric and intestinal lymphatic function should offer key insights for new therapeutic strategies in gastrointestinal disorders such as IBD. NEW & NOTEWORTHY Lymphatic integrity plays a critical role in small intestinal homeostasis. Acute intestinal insult in a mouse model of acute ileitis causes morphological and functional changes in mesenteric and intestinal lymphatic vessels. While some of the changes significantly regressed during inflammation resolution, others persisted, including lymphangiogenesis and altered dendritic cell function and movement, potentially increasing susceptibility to the recurrence of gastrointestinal inflammation.


2007 ◽  
Vol 98 (08) ◽  
pp. 304-310 ◽  
Author(s):  
Ruediger Liersch ◽  
Michael Detmar

SummaryThe lymphatic vascular system plays an important role in the maintenance of fluid homeostasis, in the afferent immune response, in the intestinal lipid uptake and in the metastatic spread of malignant cells. The recent discovery of specific markers and growth factors for lymphatic endothelium and the establishment of genetic mouse models with impairment of lymphatic function have provided novel insights into the molecular control of the lymphatic system in physiology and in embryonic development. They have also identified molecular pathways whose mutational inactivation leads to human diseases associated with lymphedema. Moreover, the lymphatic system plays a major role in chronic inflammatory diseases and in transplant rejection. Importantly, malignant tumors can directly promote lymphangiogenesis within the primary tumor and in draining lymph nodes, leading to enhanced cancer metastasis to lymph nodes and beyond. Based upon these findings, novel therapeutic strategies are currently being developed that aim at inhibiting or promoting the formation and function of lymphatic vessels in disease.


2018 ◽  
Vol 2 (3) ◽  
pp. 240-250
Author(s):  
Yasser A. Ahmed ◽  
Mohammed Abdelsabour Khalaf ◽  
Elsaysed Mohammed

The liver of reptiles is considered an important study model for the interaction between environment and hepatic tissue. Little is known about the histology of the liver of reptiles. The aim of the current study was to elucidate the histological architecture of the liver of the Nile monitor (Varanus niloticus). Liver fragments from the Nile monitor were collected in the summer season and processed for the light and electron microscopy. The liver of the Nile monitor was bi-lobed and the right lobe was found to be larger than the left lobe. Histological examination revealed indistinct lobulation of the liver, and the central vein, sinusoids and portal area were haphazardly organized. The hepatic parenchyma consisted of hepatocytes arranged in glandular-like alveoli or tubules separated by a network of twisted capillary sinusoids. The hepatocytes were polyhedral in shape with vacuolated cytoplasm and the nucleus was single rounded, eccentric, large and vesicular with a distinct nucleolus. The hepatocytes contained numerous lipid droplets, abundant glycogen granules and well-developed RER and mitochondria. The hepatocytes appeared to secrete into the bile canaliculi through the disintegration of their dark cytoplasm into the bile canaliculi. The space of Disse separating between the hepatocytes and sinusoids contained many recesses. The portal area contained branches of the portal vein, hepatic artery, bile duct and lymphatic vessels embedded in a connective tissue. Some non-parenchymal cells were described such as Kupffer cells, heterophils, melano-macrophages, intercalated cells, myofibroblasts in addition to the endothelium of the sinusoids. This is the first report about the histological structure of the liver of the Egyptian Nile monitor. The result presented here should be considered a baseline knowledge to compare with the pathological affections of the liver in this species.


2021 ◽  
Vol 15 ◽  
Author(s):  
Sichao Chen ◽  
Linqian Shao ◽  
Li Ma

Brain edema is a severe stroke complication that is associated with prolonged hospitalization and poor outcomes. Swollen tissues in the brain compromise cerebral perfusion and may also result in transtentorial herniation. As a physical and biochemical barrier between the peripheral circulation and the central nervous system (CNS), the blood–brain barrier (BBB) plays a vital role in maintaining the stable microenvironment of the CNS. Under pathological conditions, such as ischemic stroke, the dysfunction of the BBB results in increased paracellular permeability, directly contributing to the extravasation of blood components into the brain and causing cerebral vasogenic edema. Recent studies have led to the discovery of the glymphatic system and meningeal lymphatic vessels, which provide a channel for cerebrospinal fluid (CSF) to enter the brain and drain to nearby lymph nodes and communicate with the peripheral immune system, modulating immune surveillance and brain responses. A deeper understanding of the function of the cerebral lymphatic system calls into question the known mechanisms of cerebral edema after stroke. In this review, we first discuss how BBB disruption after stroke can cause or contribute to cerebral edema from the perspective of molecular and cellular pathophysiology. Finally, we discuss how the cerebral lymphatic system participates in the formation of cerebral edema after stroke and summarize the pathophysiological process of cerebral edema formation after stroke from the two directions of the BBB and cerebral lymphatic system.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mengyue Li ◽  
Qiang Wang ◽  
Qi Han ◽  
Jiameng Wu ◽  
Hongfan Zhu ◽  
...  

IntroductionThis work aimed to reveal the crucial role of Nell-1 in the angiogenic differentiation of human dental pulp stem cells (DPSCs) alone or co-cultured with human umbilical vein endothelial cell (HUVECs) in vitro and whether this molecule is involved in the pulp exposure model in vivo.MethodsImmunofluorescence was conducted to ascertain the location of Nell-1 on DPSCs, HUVECs, and normal rat dental tissues. RT-PCR, Western blot, and ELISA were performed to observe the expression levels of angiogenic markers and determine the angiogenic differentiation of Nell-1 on DPSCs alone or co-cultured with HUVECs, as well as in vitro tube formation assay. Blood vessel number for all groups was observed and compared using immunohistochemistry by establishing a rat pulp exposure model.ResultsNell-1 is highly expressed in the nucleus of DPSCs and HUVECs and is co-expressed with angiogenic markers in normal rat pulp tissues. Hence, Nell-1 can promote the angiogenic marker expression in DPSCs alone and co-cultured with other cells and can enhance angiogenesis in vitro as well as in the pulp exposure model.ConclusionNell-1 may play a positive role in the angiogenic differentiation of DPSCs.


eLife ◽  
2019 ◽  
Vol 8 ◽  
Author(s):  
Michael RM Harrison ◽  
Xidi Feng ◽  
Guqin Mo ◽  
Antonio Aguayo ◽  
Jessi Villafuerte ◽  
...  

The cardiac lymphatic vascular system and its potentially critical functions in heart patients have been largely underappreciated, in part due to a lack of experimentally accessible systems. We here demonstrate that cardiac lymphatic vessels develop in young adult zebrafish, using coronary arteries to guide their expansion down the ventricle. Mechanistically, we show that in cxcr4a mutants with defective coronary artery development, cardiac lymphatic vessels fail to expand onto the ventricle. In regenerating adult zebrafish hearts the lymphatic vasculature undergoes extensive lymphangiogenesis in response to a cryoinjury. A significant defect in reducing the scar size after cryoinjury is observed in zebrafish with impaired Vegfc/Vegfr3 signaling that fail to develop intact cardiac lymphatic vessels. These results suggest that the cardiac lymphatic system can influence the regenerative potential of the myocardium.


1978 ◽  
Vol 26 (4) ◽  
pp. 313-317 ◽  
Author(s):  
T Omata ◽  
I Ohtani ◽  
K Ohtsuki ◽  
J Ouchi

A method for the detection of lactic dehydrogenase enzymatic activity in outer hair cells of the rabbit is described. The membranous labyrinth with temporal bone was prefixed in glutaraldehyde. After being placed into the incubation medium, it was postfixed in osmium tetroxide. Specimens of the organ of Corti were removed. Then the specimens were embedded in water-soluble glycol and cut with a cryostat for light microscopy, and also they were embedded in Epon and cut for light and electron microscopy. Sectioning of the membranous labyrinth was very easily made when the specimens were embedded in both the water-soluble glycol and the Epon. The structures of the frozen sections as well as the Epon-embedded ones were well preserved. In the frozen sections the preservation and localization of reaction products were thoroughly kept, but monoformazan of the Epon-embedded sections was soluble.


2020 ◽  
Vol 2020 ◽  
pp. 1-10 ◽  
Author(s):  
Qing Ge ◽  
Li Zhao ◽  
Chen Liu ◽  
Xiaoming Ren ◽  
Yi-hui Yu ◽  
...  

Cardiac hypertrophy and ventricular remodeling following heart failure are important causes of high mortality in heart disease patients. The cardiac lymphatic system has been associated with limited research, but it plays an important role in the improvement of myocardial edema and the promotion of fluid balance. LCZ696 is a novel combination of angiotensin and neprilysin inhibitors. Here, we studied the role played by LCZ696 during transverse aortic constriction (TAC) induced cardiac hypertrophy and changes in the lymphatic system. Mice undergoing aortic coarctation were constructed to represent a cardiac hypertrophy model and then divided into random groups that either received treatment with LCZ696 (60 mg/kg/d) or no treatment. Cardiac ultrasonography was used to detect cardiac function, and hematoxylin and eosin (H&E) and Masson staining were used to detect myocardial hypertrophy and fibrosis. The proinflammatory factors interleukin-6 (IL-6), IL-1β, and tumor necrosis factor-α (TNF-α) were detected in the blood and heart tissues of mice. The protein expression levels of lymphatic-specific markers, such as vascular endothelial growth factor C (VEGF-C), VEGF receptor 3 (VEGFR3), and lymphatic vessel endothelial hyaluronan receptor 1 (LYVE-1) were detected in mouse heart tissues. We also examined the colocalization of lymphatic vessels and macrophages by immunofluorescence. The results showed that LCZ696 significantly improved heart dysfunction, cardiac hypertrophy, and fibrosis and inhibited the expression of proinflammatory factors IL-6, IL-1β, and TNF-α in the circulating blood and heart tissues of mice. LCZ696 also decreased the protein expression levels of VEGF-C, VEGFR3, and LYVE-1 in mouse heart tissues, ameliorated the transport load of lymphatic vessels to macrophages, and improved the remodeling of the lymphatic system in the hypertrophic cardiomyopathy model induced by TAC.


Sign in / Sign up

Export Citation Format

Share Document