scholarly journals Analysis of the Dynamic Proteasome Structure by Cross-Linking Mass Spectrometry

Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 505
Author(s):  
Marta L. Mendes ◽  
Gunnar Dittmar

The 26S proteasome is a macromolecular complex that degrades proteins maintaining cell homeostasis; thus, determining its structure is a priority to understand its function. Although the 20S proteasome’s structure has been known for some years, the highly dynamic nature of the 19S regulatory particle has presented a challenge to structural biologists. Advances in cryo-electron microscopy (cryo-EM) made it possible to determine the structure of the 19S regulatory particle and showed at least seven different conformational states of the proteasome. However, there are still many questions to be answered. Cross-linking mass spectrometry (CLMS) is now routinely used in integrative structural biology studies, and it promises to take integrative structural biology to the next level, answering some of these questions.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dukas Jurėnas ◽  
Leonardo Talachia Rosa ◽  
Martial Rey ◽  
Julia Chamot-Rooke ◽  
Rémi Fronzes ◽  
...  

AbstractBacteria have evolved toxins to outcompete other bacteria or to hijack host cell pathways. One broad family of bacterial polymorphic toxins gathers multidomain proteins with a modular organization, comprising a C-terminal toxin domain fused to a N-terminal domain that adapts to the delivery apparatus. Polymorphic toxins include bacteriocins, contact-dependent growth inhibition systems, and specialized Hcp, VgrG, PAAR or Rhs Type VI secretion (T6SS) components. We recently described and characterized Tre23, a toxin domain fused to a T6SS-associated Rhs protein in Photorhabdus laumondii, Rhs1. Here, we show that Rhs1 forms a complex with the T6SS spike protein VgrG and the EagR chaperone. Using truncation derivatives and cross-linking mass spectrometry, we demonstrate that VgrG-EagR-Rhs1 complex formation requires the VgrG C-terminal β-helix and the Rhs1 N-terminal region. We then report the cryo-electron-microscopy structure of the Rhs1-EagR complex, demonstrating that the Rhs1 central region forms a β-barrel cage-like structure that encapsulates the C-terminal toxin domain, and provide evidence for processing of the Rhs1 protein through aspartyl autoproteolysis. We propose a model for Rhs1 loading on the T6SS, transport and delivery into the target cell.


Author(s):  
John Trinickt ◽  
Howard White

The primary force of muscle contraction is thought to involve a change in the myosin head whilst attached to actin, the energy coming from ATP hydrolysis. This change in attached state could either be a conformational change in the head or an alteration in the binding angle made with actin. A considerable amount is known about one bound state, the so-called strongly attached state, which occurs in the presence of ADP or in the absence of nucleotide. In this state, which probably corresponds to the last attached state of the force-producing cycle, the angle between the long axis myosin head and the actin filament is roughly 45°. Details of other attached states before and during power production have been difficult to obtain because, even at very high protein concentration, the complex is almost completely dissociated by ATP. Electron micrographs of the complex in the presence of ATP have therefore been obtained only after chemically cross-linking myosin subfragment-1 (S1) to actin filaments to prevent dissociation. But it is unclear then whether the variability in attachment angle observed is due merely to the cross-link acting as a hinge.We have recently found low ionic-strength conditions under which, without resorting to cross-linking, a high fraction of S1 is bound to actin during steady state ATP hydrolysis. The structure of this complex is being studied by cryo-electron microscopy of hydrated specimens. Most advantages of frozen specimens over ambient temperature methods such as negative staining have already been documented. These include improved preservation and fixation rates and the ability to observe protein directly rather than a surrounding stain envelope. In the present experiments, hydrated specimens have the additional benefit that it is feasible to use protein concentrations roughly two orders of magnitude higher than in conventional specimens, thereby reducing dissociation of weakly bound complexes.


Soft Matter ◽  
2021 ◽  
Author(s):  
Edward Egelman ◽  
Fengbin Wang

In structural biology, cryo-electron microscopy (cryo-EM) has emerged as the main technique for determining the atomic structures of macromolecular complexes. This has largely been due to the introduction of direct...


Science ◽  
2018 ◽  
Vol 361 (6405) ◽  
pp. 876-880 ◽  
Author(s):  
Yifan Cheng

Cryo–electron microscopy, or simply cryo-EM, refers mainly to three very different yet closely related techniques: electron crystallography, single-particle cryo-EM, and electron cryotomography. In the past few years, single-particle cryo-EM in particular has triggered a revolution in structural biology and has become a newly dominant discipline. This Review examines the fascinating story of its start and evolution over the past 40-plus years, delves into how and why the recent technological advances have been so groundbreaking, and briefly considers where the technique may be headed in the future.


2021 ◽  
Author(s):  
Nicole Dimos ◽  
Carl P.O. Helmer ◽  
Andrea M. Chanique ◽  
Markus C. Wahl ◽  
Robert Kourist ◽  
...  

Enzyme catalysis has emerged as a key technology for developing efficient, sustainable processes in the chemical, biotechnological and pharmaceutical industries. Plants provide large and diverse pools of biosynthetic enzymes that facilitate complex reactions, such as the formation of intricate terpene carbon skeletons, with exquisite specificity. High-resolution structural analysis of these enzymes is crucial to understand their mechanisms and modulate their properties by targeted engineering. Although cryo-electron microscopy (cryo-EM) has revolutionized structural biology, its applicability to high-resolution structure analysis of comparatively small enzymes is so far largely unexplored. Here, we show that cryo-EM can reveal the structures of ~120 kDa plant borneol dehydrogenases at or below 2 Å resolution, paving the way for the fast development of new biocatalysts that provide access to bioactive terpenes and terpenoids.


Author(s):  
Lucía Quintana-Gallardo ◽  
Moisés Maestro-López ◽  
Jaime Martín-Benito ◽  
Miguel Marcilla ◽  
Daniel Rutz ◽  
...  

The Analyst ◽  
2016 ◽  
Vol 141 (1) ◽  
pp. 70-75 ◽  
Author(s):  
Matteo T. Degiacomi ◽  
Justin L. P. Benesch

EM∩IM enables the calculation of collision cross-sections from electron density maps obtained, for example, by means of transmission electron microscopy. This capability will further aid the integration of ion mobility mass spectrometry with modern structural biology.


Sign in / Sign up

Export Citation Format

Share Document