scholarly journals Integrative Analyses of Genes Associated with Subcutaneous Insulin Resistance

Biomolecules ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 37 ◽  
Author(s):  
Manoj Kumar Pujar ◽  
Basavaraj Vastrad ◽  
Chanabasayya Vastrad

: Insulin resistance is present in the majority of patients with non-insulin-dependent diabetes mellitus (NIDDM) and obesity. In this study, we aimed to investigate the key genes and potential molecular mechanism in insulin resistance. Expression profiles of the genes were extracted from the Gene Expression Omnibus (GEO) database. Pathway and Gene Ontology (GO) enrichment analyses were conducted at Enrichr. The protein–protein interaction (PPI) network was settled and analyzed using the Search Tool for the Retrieval of Interacting Genes (STRING) database constructed by Cytoscape software. Modules were extracted and identified by the PEWCC1 plugin. The microRNAs (miRNAs) and transcription factors (TFs) which control the expression of differentially expressed genes (DEGs) were analyzed using the NetworkAnalyst algorithm. A database (GSE73108) was downloaded from the GEO databases. Our results identified 873 DEGs (435 up-regulated and 438 down-regulated) genetically associated with insulin resistance. The pathways which were enriched were pathways in complement and coagulation cascades and complement activation for up-regulated DEGs, while biosynthesis of amino acids and the Notch signaling pathway were among the down-regulated DEGs. Showing GO enrichment were cardiac muscle cell–cardiac muscle cell adhesion and microvillus membrane for up-regulated DEGs and negative regulation of osteoblast differentiation and dendrites for down-regulated DEGs. Subsequently, myosin VB (MYO5B), discs, large homolog 2(DLG2), axin 2 (AXIN2), protein tyrosine kinase 7 (PTK7), Notch homolog 1 (NOTCH1), androgen receptor (AR), cyclin D1 (CCND1) and Rho family GTPase 3 (RND3) were diagnosed as the top hub genes in the up- and down-regulated PPI network and modules. In addition, GATA binding protein 6 (GATA6) , ectonucleotide pyrophosphatase/phosphodiesterase 5 (ENPP5), cyclin D1 (CCND1) and tubulin, beta 2A (TUBB2A) were diagnosed as the top hub genes in the up- and down-regulated target gene–miRNA network, while tubulin, beta 2A (TUBB2A), olfactomedin-like 1 (OLFML1), prostate adrogen-regulated mucin-like protein 1 (PARM1) and aldehyde dehydrogenase 4 family, member A1 (ALDH4A1)were diagnosed as the top hub genes in the up- and down-regulated target gene–TF network. The current study based on the GEO database provides a novel understanding regarding the mechanism of insulin resistance and may provide novel therapeutic targets.

2020 ◽  
Author(s):  
Vikrant Ghatnatti ◽  
Basavaraj Vastrad ◽  
Swetha Patil ◽  
Chanabasayya Vastrad ◽  
Iranna Kotturshetti

AbstractPituitary prolactinoma is one of the most complicated and fatally pathogenic pituitary adenomas. Therefore, there is an urgent need to improve our understanding of the underlying molecular mechanism that drives the initiation, progression, and metastasis of pituitary prolactinoma. The aim of the present study was to identify the key genes and signaling pathways associated with pituitary prolactinoma using bioinformatics analysis. Transcriptome microarray dataset GSE119063 was acquired from Gene Expression Omnibus datasets, which included 5 pituitary prolactinoma samples and 4 normal pituitaries samples. We screened differentially expressed genes (DEGs) with limma and investigated their biological function by pathway and Gene Ontology (GO) enrichment analysis. A protein-protein interaction (PPI) network of the up and down DEGs were constructed and analyzed by HIPPIE and Cytoscape software. Module analyses were performed. In addition, a target gene - miRNA network and target gene - TF network of the up and down DEGs were constructed by NetworkAnalyst and Cytoscape software. The set of DEGs exhibited an intersection consisting of 989 genes (461 up-regulated and 528 down-regulated), which may be associated with pituitary prolactinoma. Pathway enrichment analysis showed that the 989 DEGs were significantly enriched in the retinoate biosynthesis II, signaling pathways regulating pluripotency of stem cells, ALK2 signaling events, vitamin D3 biosynthesis, cell cycle and aurora B signaling. Gene Ontology (GO) enrichment analysis also showed that sensory organ morphogenesis, extracellular matrix, hormone activity, nuclear division, condensed chromosome and microtubule binding. In the PPI network and modules, SOX2, PRSS45, CLTC, PLK1, B4GALT6, RUNX1 and GTSE1 were considered as hub genes. In the target gene miRNA network and target gene - TF network, LINC00598, SOX4, IRX1 and UNC13A were considered as hub genes. Using integrated bioinformatics analysis, we identified candidate genes in pituitary prolactinoma, which may improve our understanding of the mechanisms of the pathogenesis and integration; genes may be therapeutic targets and prognostic markers for pituitary prolactinoma.


2020 ◽  
Author(s):  
Basavaraj Vastrad ◽  
Chanabasayya Vastrad ◽  
Iranna Kotturshetti

AbstractTriple receptor negative breast cancer (TNBC) is the type of gynecological cancer in the elderly women. This study is aimed to explore molecular mechanism of TNBC via bioinformatics analysis. The gene expression profiles of GSE88715 (including 38 TNBC and 38 normal control) was downloaded from the Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) were screened using the limma package in R software. Pathway and gene ontology (GO) enrichment analysis were performed based on various pathway dabases and GO database. Then, InnateDb interactome database, Cytoscape and PEWCC1 were applied to construct the protein-protein interaction (PPI) network and screen hub genes. Similarly, miRNet database, NetworkAnalyst database and Cytoscape were applied to construct the target gene - miRNA network and target gene - TF network, and screen targate genes. Pathway and GO enrichment analysis was further performed for hub genes, gene clusters identified via module analysis and targate genes. The expression of hub genes with prognostic values was validated on the UALCAN, cBio Portal, The Human Protein Atlas, receiver operator characteristic (ROC) curve analysis, RT-PCR analysis and immune infiltration analysis. A total of 949 DEGs were identified in TNBC (469 up regulated genes, and 480 down regulated genes), and they were mainly enriched in the terms of phospholipases, toxoplasmosis, immune response, cell surface, glycolysis, biosynthesis of amino acids, carboxylic acid metabolic process and organic substance catabolic process extracellular space. Hub genes including UBD, HLA-B, MYC and HSP90AB1 were identified via PPI network and modules, which were mainly enriched in immune response, antigen processing and presentation, cell cycle and pathways in cancer. Targate genes including CCDC80, PEG10, HOPX and CCNA2 were identified via target gene - miRNA network and target gene - TF network, which were mainly enriched in extracellular structure organization, validated targets of C-MYC transcriptional activation, ensemble of genes encoding core extracellular matrix including ECM glycoproteins and cell cycle. The top five significantly overexpressed mRNA (ADAM15, BATF, NOTCH3, ITGAX and SDC1) and the top five significantly underexpressed mRNA (RPL4, EEF1G, RPL3, RBMX and ABCC2) were selected for further validation in TNBCpatients and healthy controls. Analysis of the expression of genes in the various databases showed that ADAM15, BATF, NOTCH3, ITGAX, SDC1, RPL4, EEF1G, RPL3, RBMX and ABCC2 expressions have a cancer specific pattern in TNBC. Collectively, ADAM15, BATF, NOTCH3, ITGAX, SDC1, RPL4, EEF1G, RPL3, RBMX and ABCC2 may be useful candidate biomarkers for TNBC diagnosis, prognosis and theraputic targates.


1999 ◽  
Vol 5 (3) ◽  
pp. 37
Author(s):  
Koichiro Kuwahara ◽  
Yoshihiko Saito ◽  
Ichiro Kishimoto ◽  
Masaki Harada ◽  
Ichiro Hamanaka ◽  
...  

2020 ◽  
Author(s):  
Chenhe Yao ◽  
Xiaoling Zhao ◽  
Xuemeng Shang ◽  
Binghan Jia ◽  
Shuaijie Dou ◽  
...  

Abstract Background: Adrenocortical carcinoma (ACC) is a heterogeneous and rare malignant tumor associated with a poor prognosis. The molecular mechanisms of ACC remain elusive and more accurate biomarkers for the prediction of prognosis are needed.Methods: In this study, integrative profiling analyses were performed to identify novel hub genes in ACC to provide promising targets for future investigation. Three gene expression profiling datasets in the GEO database were used for the identification of overlapped differentially expressed genes (DEGs) following the criteria of adj.P.Value<0.05 and |log2 FC|>0.5 in ACC. Novel hub genes were screened out following a series of processes: the retrieval of DEGs with no known associations with ACC on Pubmed, then the cross-validation of expression values and significant associations with overall survival in the GEPIA2 and starBase databases, and finally the prediction of gene-tumor association in the GeneCards database.Results: Four novel hub genes were identified and two of them, TPX2 and RACGAP1, were positively correlated with the staging. Interestingly, co-expression analysis revealed that the association between TPX2 and RACGAP1 was the strongest and that the expression of HOXA5 was almost completely independent of that of RACGAP1 and TPX2. Furthermore, the PPI network consisting of four novel genes and seed genes in ACC revealed that HOXA5, TPX2, and RACGAP1 were all associated with TP53. Conclusions: This study identified four novel hub genes (TPX2, RACHAP1, HXOA5 and FMO2) that may play crucial roles in the tumorigenesis and the prediction of prognosis of ACC.


2021 ◽  
Author(s):  
Xi Chen ◽  
Junjie Ma ◽  
Chengdang Xu ◽  
Licheng Wang ◽  
Yicong Yao ◽  
...  

Abstract BackgroundProstate cancer (PCa) and benign prostate hyperplasia (BPH) are commonly encountered diseases in elderly males. The two diseases have some commonalities: both are growth depend on hormone and respond to antiandrogen therapy. Some studies have shown that genetic factors are responsible for the occurrences of both diseases. There may be a correlation between BPH and PCa. MethodsThe GEO database can help determine the differentially expressed genes (DEGs) between BPH and PCa. Gene Ontology (GO) term enrichment analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were utilized to find pathways in which the DEGs were enriched. The STRING database can provide a protein–protein interaction (PPI) network, and Cytoscape software can find hub genes in PPI network. GEPIA can be used to analyze expression and survival data for hub genes. R software was used to progress regression analysis, decision curve analysis and built nomograph. UALCAN and The Human Protein Atlas was utilized to test the results. Finally, we made clinical and cell experiments to verify the results.ResultsSixty DEGs, consisting of 15 up-regulated and 45 down-regulated genes, were found based on the GEO database. Using Cytoscape, we found 7 hub gene in the PPI network. The hub gene expression was tested on TCGA database. Except CXCR4, all hub genes expressed differently between tumor and normal samples. Meanwhile, all hub genes exclude CXCR4 has diagnostic value in predicting PCa and their mutations are risk factors leading to PCa. The expression of CSRP1, MYL9 and SNAI2 changed in different tumor stage. CSRP1 and MYH11 could affect the disease-free survival (DFS). The same results reflected in different database. In addition, we also chose three hub gene, MYC, MYL9, and SNAI2, to validate their functions in clinical specimens and cells.ConclusionThese identified hub genes can help us to understand the process and mechanism by which BPH develops into PCa and provide achievable targets for predicting which BPH patients may later develop PCa.


2020 ◽  
Author(s):  
Praveenkumar Devarbhavi ◽  
Basavaraj Vastrad ◽  
Anandkumar Tengli ◽  
Chanabasayya Vastrad ◽  
Iranna Kotturshetti

AbstractNeuroendocrine tumor (NET) is one of malignant cancer and is identified with high morbidity and mortality rates around the world. With indigent clinical outcomes, potential biomarkers for diagnosis, prognosis and drug target are crucial to explore. The aim of this study is to examine the gene expression module of NET and to identify potential diagnostic and prognostic biomarkers as well as to find out new drug target. The differentially expressed genes (DEGs) identified from GSE65286 dataset was used for pathway enrichment analyses and gene ontology (GO) enrichment analyses and protein - protein interaction (PPI) analysis and module analysis. Moreover, miRNAs and transcription factors (TFs) that regulated the up and down regulated genes were predicted. Furthermore, validation of hub genes was performed. Finally, molecular docking studies were performed. DEGs were identified, including 453 down regulated and 459 up regulated genes. Pathway and GO enrichment analysis revealed that DEGs were enriched in sucrose degradation, creatine biosynthesis, anion transport and modulation of chemical synaptic transmission. Important hub genes and target genes were identified through PPI network, modules, target gene - miRNA network and target gene - TF network. Finally, survival analyses, receiver operating characteristic (ROC) curve and RT-PCR validated the significant difference of ATP1A1, LGALS3, LDHA, SYK, VDR, OBSL1, KRT40, WWOX, NINL and PPP2R2B between metastatic NET and normal controls. In conclusion, the DEGs and hub genes with their regulatory elements identified in this study will help us understand the molecular mechanisms underlying NET and provide candidate targets for future research.


In Vitro ◽  
1984 ◽  
Vol 20 (8) ◽  
pp. 647-651 ◽  
Author(s):  
William C. Claycomb ◽  
Nicholas Lanson

Sign in / Sign up

Export Citation Format

Share Document