scholarly journals Fluorescence Based on Surface Plasmon Coupled Emission for Ultrahigh Sensitivity Immunoassay of Cardiac Troponin I

Biomedicines ◽  
2021 ◽  
Vol 9 (5) ◽  
pp. 448
Author(s):  
Vien Thi Tran ◽  
Heongkyu Ju

This work demonstrates the quantitative assay of cardiac Troponin I (cTnI), one of the key biomarkers for acute cardiovascular diseases (the leading cause of death worldwide) using the fluorescence-based sandwich immune reaction. Surface plasmon coupled emission (SPCE) produced by non-radiative coupling of dye molecules with surface plasmons being excitable via the reverse Kretschmann format is exploited for fluorescence-based sandwich immunoassay for quantitative detection of cTnI. The SPCE fluorescence chip utilizes the gold (2 nm)-silver (50 nm) bimetallic thin film, with which molecules of the dye Alexa 488 (conjugated with detection antibodies) make a near field coupling with the plasmonic film for SPCE. The experimental results find that the SPCE greatly improves the sensitivity via enhancing the fluorescence signal (up to 50-fold) while suppressing the photo-bleaching, permitting markedly enhanced signal-to-noise ratio. The limit of detection of 21.2 ag mL−1 (atto-gram mL−1) is obtained, the lowest ever reported to date amid those achieved by optical technologies such as luminescence and label-free optical sensing techniques. The features discovered such as ultrahigh sensitivity may prompt the presented technologies to be applied for early diagnosis of cTnI in blood, particularly for emergency medical centers overloaded with patients with acute myocardial infarction who would suffer from time-delayed diagnosis due to insufficient assay device sensitivity.

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 631 ◽  
Author(s):  
Oleksiy Krupin ◽  
Pierre Berini

Straight long-range surface plasmon-polariton (LRSPP) waveguides as biosensors for label-free detection are discussed. The sensors consist of 5-μm-wide 35-nm-thick gold stripes embedded in a low-index optical-grade fluoropolymer (CYTOPTM) with fluidic channels etched to the Au surface of the stripes. This work demonstrates the application of the LRSPP biosensors for the detection of human cardiac troponin I (cTnI) protein. cTnI is a biological marker for acute myocardial infarction (AMI), often referred to as a heart attack, which can be diagnosed by elevated levels of cTnI in patient blood. Direct and sandwich assays were developed and demonstrated over the concentration range from 1 to 1000 ng/mL, yielding detection limits of 430 pg/mL for the direct assay and 28 pg/mL for the sandwich assay (1 standard deviation), the latter being physiologically relevant to the early detection or onset of AMI. In addition, a novel approach for data analysis is proposed, where the analyte response is normalized to the response of the antibody layer.


Author(s):  
Peter A. Kavsak ◽  
Tara Edge ◽  
Chantele Roy ◽  
Paul Malinowski ◽  
Karen Bamford ◽  
...  

AbstractObjectivesTo analytically evaluate Ortho Clinical Diagnostics VITROS high-sensitivity cardiac troponin I (hs-cTnI) assay in specific matrices with comparison to other hs-cTn assays.MethodsThe limit of detection (LoD), imprecision, interference and stability testing for both serum and lithium heparin (Li-Hep) plasma for the VITROS hs-cTnI assay was determined. We performed Passing-Bablok regression analyses between sample types for the VITROS hs-cTnI assay and compared them to the Abbott ARCHITECT, Beckman Access and the Siemens ADVIA Centaur hs-cTnI assays. We also performed Receiver-operating characteristic curve analyses with the area under the curve (AUC) determined in an emergency department (ED)-study population (n=131) for myocardial infarction (MI).ResultsThe VITROS hs-cTnI LoD was 0.73 ng/L (serum) and 1.4 ng/L (Li-Hep). Stability up to five freeze-thaws was observed for the Ortho hs-cTnI assay, with the analyte stability at room temperature in serum superior to Li-Hep with gross hemolysis also affecting Li-Hep plasma hs-cTnI results. Comparison of Li-Hep to serum concentrations (n=202), yielded proportionally lower concentrations in plasma with the VITROS hs-cTnI assay (slope=0.85; 95% confidence interval [CI]:0.83–0.88). In serum, the VITROS hs-cTnI concentrations were proportionally lower compared to other hs-cTnI assays, with similar slopes observed between assays in samples frozen <−70 °C for 17 years (ED-study) or in 2020. In the ED-study, the VITROS hs-cTnI assay had an AUC of 0.974 (95%CI:0.929–0.994) for MI, similar to the AUCs of other hs-cTn assays.ConclusionsLack of standardization of hs-cTnI assays across manufacturers is evident. The VITROS hs-cTnI assay yields lower concentrations compared to other hs-cTnI assays. Important differences exist between Li-Hep plasma and serum, with evidence of stability and excellent clinical performance comparable to other hs-cTn assays.


2013 ◽  
Vol 85 (8) ◽  
pp. 3858-3863 ◽  
Author(s):  
Adaikkappan Periyakaruppan ◽  
Ram P. Gandhiraman ◽  
M. Meyyappan ◽  
Jessica E. Koehne

Author(s):  
Giuseppe Lippi ◽  
Anna Ferrari ◽  
Giorgio Gandini ◽  
Matteo Gelati ◽  
Claudia Lo Cascio ◽  
...  

AbstractBackground:This study was aimed to evaluate the analytical performance of the novel chemiluminescent and fully-automated Beckman Coulter Access hsTnI high-sensitivity immunoassay for measurement of cardiac troponin I (cTnI).Methods:The study, using lithium heparin samples, included assessment of limit of blank (LOB), limit of detection (LOD), functional sensitivity, linearity, imprecision (within run, between-run and total), calculation of 99th percentile upper reference limit (URL) in 175 healthy blood donors (mean age, 36±12 years; 47% women) and comparison with two other commercial cTnI immunoassays.Results:The LOB, LOD and functional sensitivity of Access hsTnI were 0.14, 0.34 and 1.35 ng/L, respectively. The within-run, between-run and total imprecision was 2.2%–2.9%, 4.6%–5.4%, and 5.4%–6.1%, respectively. The linearity was excellent in the range of cTnI values between 0.95 and 4195 ng/L (r=1.00). The 99th percentile URL was 15.8 ng/L. Measurable cTnI values were found in 173/175 healthy subjects (98.9%). Good agreement of cTnI values was found with AccuTnI+3 (r=0.97; mean bias, −9.3%), whereas less satisfactory agreement was found with Siemens Dimension Vista cTnI (r=0.95; mean bias, −55%).Conclusions:The results of our evaluation of the Beckman Coulter Access hsTnI indicate that the analytical performance of this fully-automated immunoassay is excellent.


Sign in / Sign up

Export Citation Format

Share Document