scholarly journals Poloxamer 188 Exerts Direct Protective Effects on Mouse Brain Microvascular Endothelial Cells in an In Vitro Traumatic Brain Injury Model

Biomedicines ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1043
Author(s):  
Felicia P. Lotze ◽  
Matthias L. Riess

Traumatic Brain Injury (TBI), the main contributor to morbidity and mortality worldwide, can disrupt the cell membrane integrity of the vascular endothelial system, endangering blood–brain barrier function and threatening cellular subsistence. Protection of the vascular endothelial system might enhance clinical outcomes after TBI. Poloxamer 188 (P188) has been shown to improve neuronal function after ischemia/reperfusion (I/R) injury as well as after TBI. We aimed to establish an in vitro compression-type TBI model, comparing mild-to-moderate and severe injury, to observe the direct effects of P188 on Mouse Brain Microvascular Endothelial Cells (MBEC). Confluent MBEC were exposed to normoxic or hypoxic conditions for either 5 or 15 h (hours). 1 h compression was added, and P188 was administered during 2 h reoxygenation. A direct effect of P188 on MBEC was tested by assessing cell number/viability, cytotoxicity/membrane damage, metabolic activity, and total nitric oxide production (tNOp). While P188 enhanced cell number/viability, metabolic activity, and tNOp, an increase in cytotoxicity/membrane damage after mild-to-moderate injury was prevented. In severely injured MBEC, P188 improved metabolic activity only. P188, present during reoxygenation, influenced MBEC function directly in simulated I/R and compression-type TBI.

Circulation ◽  
2019 ◽  
Vol 140 (Suppl_2) ◽  
Author(s):  
Felicia P Lotze ◽  
Michele M Salzman ◽  
Johannes A Pille ◽  
Claudius Balzer ◽  
Josephine E Hees ◽  
...  

Introduction: Traumatic brain injury (TBI), a major cause of severe disability and death, can lead to disruption of the vascular endothelial system and cell membrane integrity, threatening the survival of multiple cell types. Reducing these could improve the clinical outcome of TBI. Poloxamer 188 (P188) has been shown to protect different cell types against ischemia/reperfusion (IR) injury. Hypothesis: P188 protects mouse brain microvascular endothelial cells (MBECs) against injury in an in-vitro compression-type TBI model. Methods: Confluent MBEC cultures were exposed to normoxic (complete media; 21% O 2 , 5% CO 2 , 74% N 2 ; 37°C) or hypoxic (glucose-, serum-free media; 0.01% O 2 , 5% CO 2 , N 2 balance; 37°C) conditions for 5 hrs, with compression (9.81 N / 0.16 cm 2 ) added during the first hour of normoxia/hypoxia. All MBECs then underwent 2 hrs of reoxygenation in normoxic conditions ± P188 (10 μM, 100 μM, 1 mM). Samples were assayed for cell number, cytotoxicity (lactate dehydrogenase [LDH] release), and metabolic activity. Statistics: Data are mean ± SEM. Kruskal-Wallis one-way analysis of variance on Ranks, Dunn’s Method; p <0.05, * vs normoxia, † vs hypoxia, ** vs normoxia + compression, †† vs hypoxia + compression; n = 11-19 experiments/group. Results: Compared to normoxic cells without compression, cell number and metabolic activity decreased and cytotoxicity increased in cells exposed to hypoxic conditions +/- compression followed by reoxygenation. In hypoxic cells, 1 mM P188 increased cell number and metabolic activity and decreased cytotoxicity, while 100 μM only increased metabolic activity and decreased cytotoxicity and 10 μM only increased metabolic activity. In hypoxic compressed cells, no concentration of P188 improved cell number, however, 10 μM and 100 μM P188 increased metabolic activity, while 1 mM increased metabolic activity and decreased cytotoxicity. There was no difference between normoxic compressed and non-compressed cells in any assay, although all concentrations of P188 tested increased metabolic activity in normoxic compressed cells. Conclusion: P188, present during reoxygenation, provides protection to MBECs exposed to simulated IR injury, as well as compression-type TBI.


2019 ◽  
Vol 33 (S1) ◽  
Author(s):  
Felicia P. Lotze ◽  
Michele M. Salzman ◽  
Johannes A. Pille ◽  
Claudius Balzer ◽  
Josephine E. Hees ◽  
...  

2008 ◽  
Vol 2008 ◽  
pp. 1-8 ◽  
Author(s):  
Shumei Man ◽  
Eroboghene E. Ubogu ◽  
Katherine A. Williams ◽  
Barbara Tucky ◽  
Melissa K. Callahan ◽  
...  

Endothelial cells that functionally express blood brain barrier (BBB) properties are useful surrogates for studying leukocyte-endothelial cell interactions at the BBB. In this study, we compared two different endothelial cellular models: transfected human brain microvascular endothelial cells (THBMECs) and human umbilical vein endothelial cells (HUVECs). With each grow under optimal conditions, confluent THBMEC cultures showed continuous occludin and ZO-1 immunoreactivity, while HUVEC cultures exhibited punctate ZO-1 expression at sites of cell-cell contact only. Confluent THBMEC cultures on 24-well collagen-coated transwell inserts had significantly higher transendothelial electrical resistance (TEER) and lower solute permeability than HUVECs. Confluent THBMECs were more restrictive for mononuclear cell migration than HUVECs. Only THBMECs utilized abluminal CCL5 to facilitate T-lymphocyte migration in vitro although both THBMECs and HUVECs employed CCL3 to facilitate T cell migration. These data establish baseline conditions for using THBMECs to develop in vitro BBB models for studying leukocyte-endothelial interactions during neuroinflammation.


2021 ◽  
Vol 18 ◽  
Author(s):  
Juxuan Ruan ◽  
Lei Wang ◽  
Jiheng Dai ◽  
Jing Li ◽  
Ning Wang ◽  
...  

Objective: Angiogenesis led by brain microvascular endothelial cells (BMECs) contributes to the remission of brain injury after brain ischemia reperfusion. In this study, we investigated the effects of hydroxysafflor yellow A(HSYA) on angiogenesis of BMECs injured by OGD/R via SIRT1-HIF-1α-VEGFA signaling pathway. Methods: The OGD/R model of BMECs was established in vitro by OGD for 2h and reoxygenation for 24h. At first, the concentrations of vascular endothelial growth factor (VEGF), Angiopoietin (ang) and platelet-derived growth factor (PDGF) in supernatant were detected by ELISA, and the proteins expression of VEGFA, Ang-2 and PDGFB in BMECs were tested by western blot; the proliferation, adhesion, migration (scratch healing and transwell) and tube formation experiment of BMECs; the expression of CD31 and CD34 were tested by immunofluorescence staining. The levels of sirtuin1(SIRT1), hypoxia-inducible factor-1α (HIF-1α), VEGFA mRNA and protein were tested. Results: HSYA up-regulated the levels of VEGF, Ang and PDGF in the supernatant of BMECs under OGD/R, and the protein expression of VEGFA, Ang-2 and PDGFB were increased; HSYA could significantly alleviate the decrease of cell proliferation, adhesion, migration and tube formation ability of BMECs during OGD/R; HSYA enhanced the fluorescence intensity of CD31 and CD34 of BMECs during OGD/R; HSYA remarkably up-regulated the expression of SIRT1, HIF-1α, VEGFA mRNA and protein after OGD/R, and these increase decreased after SIRT1 was inhibited. Conclusion: SIRT1-HIF-1α-VEGFA signaling pathway is involved in HSYA improves angiogenesis of BMECs injured by OGD/R.


Author(s):  
Lorena Gárate-Vélez ◽  
Claudia Escudero-Lourdes ◽  
Daniela Salado-Leza ◽  
Armando González-Sánchez ◽  
Ildemar Alvarado-Morales ◽  
...  

Background: Iron nanoparticles, mainly in magnetite phase (Fe3O4 NPs), are released to the environment in areas with high traffic density and braking frequency. Fe3O4 NPs were found in postmortem human brains and are assumed to get directly into the brain through the olfactory nerve. However, these pollution-derived NPs may also translocate from the lungs to the bloodstream and then, through the blood-brain barrier (BBB), into the brain inducing oxidative and inflammatory responses that contribute to neurodegeneration. Objective: To describe the interaction and toxicity of pollution-derived Fe3O4 NPs on primary rat brain microvascular endothelial cells (rBMECs), main constituents of in vitro BBB models. Methods: Synthetic bare Fe3O4 NPs that mimic the environmental ones (miFe3O4) were synthesized by co-precipitation and characterized using complementary techniques. The rBMECs were cultured in Transwell® plates. The NPs-cell interaction was evaluated through transmission electron microscopy and standard colorimetric in vitro assays. Results: The miFe3O4 NPs, with a mean diameter of 8.45 ± 0.14 nm, presented both magnetite and maghemite phases, and showed super-paramagnetic properties. Results suggest that miFe3O4 NPs are internalized by rBMECs through endocytosis and that they are able to cross the cells monolayer. The lowest miFe3O4 NPs concentration tested induced mid cytotoxicity in terms of 1) membrane integrity (LDH release) and 2) metabolic activity (MTS transformation). Conclusion: Pollution-derived Fe3O4 NPs may interact and cross the microvascular endothelial cells forming the BBB and cause biological damage.


2020 ◽  
Vol 7 ◽  
Author(s):  
Amod Kulkarni ◽  
Evelína Mochnáčová ◽  
Petra Majerova ◽  
Ján Čurlík ◽  
Katarína Bhide ◽  
...  

Neisseria adhesin A (NadA), one of the surface adhesins of Neisseria meningitides (NM), interacts with several cell types including human brain microvascular endothelial cells (hBMECs) and play important role in the pathogenesis. Receptor binding pockets of NadA are localized on the globular head domain (A33 to K69) and the first coiled-coil domain (L121 to K158). Here, the phage display was used to develop a variable heavy chain domain (VHH) that can block receptor binding sites of recombinant NadA (rec-NadA). A phage library displaying VHH was panned against synthetic peptides (NadA-gdA33−K69 or NadA-ccL121−K158), gene encoding VHH was amplified from bound phages and re-cloned in the expression vector, and the soluble VHHs containing disulfide bonds were overexpressed in the SHuffle E. coli. From the repertoire of 96 clones, two VHHs (VHHF3–binding NadA-gdA33−K69 and VHHG9–binding NadA-ccL121−K158) were finally selected as they abrogated the interaction between rec-NadA and the cell receptor. Preincubation of NM with VHHF3 and VHHG9 significantly reduced the adhesion of NM on hBMECs in situ and hindered the traversal of NM across the in-vitro BBB model. The work presents a phage display pipeline with a single-round of panning to select receptor blocking VHHs. It also demonstrates the production of soluble and functional VHHs, which blocked the interaction between NadA and its receptor, decreased adhesion of NM on hBMECs, and reduced translocation of NM across BBB in-vitro. The selected NadA blocking VHHs could be promising molecules for therapeutic translation.


Dose-Response ◽  
2020 ◽  
Vol 18 (2) ◽  
pp. 155932582091378
Author(s):  
Jun Leng ◽  
Wei Liu ◽  
Li Li ◽  
Fang Yue Wei ◽  
Meng Tian ◽  
...  

Objective: The objective of the present work was to study the role of Cxcl1 in cerebral ischemia–reperfusion (I/R) injury and to in-depth explore its pathogenesis. Methods: The expression of Cxcl1 based on the public data was analyzed. Then, we constructed an oxygen glucose deprivation/reoxygenation (OGD/R) model in vitro using mice brain microvascular endothelial cells (BMECs) to simulate cerebral I/R in vivo. Results: The results of quantitative real-time polymerase chain reaction assay uncovered that Cxcl1 showed higher expression while miR-429 showed lower expression in BMECs damaged by OGD/R, whereas overexpression of Cxcl1 or inhibition of miR-429 expression can strengthen this effect. Hereafter, through dual luciferase reporter assay, we verified that miR-429 directly targets Cxcl1 and negatively regulates Cxcl1 expression. Furthermore, the results also revealed that overexpression of Cxcl1 can reverse the miR-429-mediated effects. Conclusion: We concluded that miR-429 exerts protective effects against OGD/R-induce injury in vitro through modulation of Cxcl1 and nuclear factor kinase B pathway, hoping provide a new view on the pathogenesis of cerebral I/R injury and a feasible potential therapeutic target.


Sign in / Sign up

Export Citation Format

Share Document