scholarly journals Review of Cryogenic Carbon Capture Innovations and Their Potential Applications

2021 ◽  
Vol 7 (3) ◽  
pp. 58
Author(s):  
Carolina Font-Palma ◽  
David Cann ◽  
Chinonyelum Udemu

Our ever-increasing interest in economic growth is leading the way to the decline of natural resources, the detriment of air quality, and is fostering climate change. One potential solution to reduce carbon dioxide emissions from industrial emitters is the exploitation of carbon capture and storage (CCS). Among the various CO2 separation technologies, cryogenic carbon capture (CCC) could emerge by offering high CO2 recovery rates and purity levels. This review covers the different CCC methods that are being developed, their benefits, and the current challenges deterring their commercialisation. It also offers an appraisal for selected feasible small- and large-scale CCC applications, including blue hydrogen production and direct air capture. This work considers their technological readiness for CCC deployment and acknowledges competing technologies and ends by providing some insights into future directions related to the R&D for CCC systems.

Author(s):  
Sabine Fuss

The 2°C target for global warming had been under severe scrutiny in the run-up to the climate negotiations in Paris in 2015 (COP21). Clearly, with a remaining carbon budget of 470–1,020 GtCO2eq from 2015 onwards for a 66% probability of stabilizing at concentration levels consistent with remaining below 2°C warming at the end of the 21st century and yearly emissions of about 40 GtCO2 per year, not much room is left for further postponing action. Many of the low stabilization pathways actually resort to the extraction of CO2 from the atmosphere (known as negative emissions or Carbon Dioxide Removal [CDR]), mostly by means of Bioenergy with Carbon Capture and Storage (BECCS): if the biomass feedstock is produced sustainably, the emissions would be low or even carbon-neutral, as the additional planting of biomass would sequester about as much CO2 as is generated during energy generation. If additionally carbon capture and storage is applied, then the emissions balance would be negative. Large BECCS deployment thus facilitates reaching the 2°C target, also allowing for some flexibility in other sectors that are difficult to decarbonize rapidly, such as the agricultural sector. However, the large reliance on BECCS has raised uneasiness among policymakers, the public, and even scientists, with risks to sustainability being voiced as the prime concern. For example, the large-scale deployment of BECCS would require vast areas of land to be set aside for the cultivation of biomass, which is feared to conflict with conservation of ecosystem services and with ensuring food security in the face of a still growing population.While the progress that has been made in Paris leading to an agreement on stabilizing “well below 2°C above pre-industrial levels” and “pursuing efforts to limit the temperature increase to 1.5°C” was mainly motivated by the extent of the impacts, which are perceived to be unacceptably high for some regions already at lower temperature increases, it has to be taken with a grain of salt: moving to 1.5°C will further shrink the time frame to act and BECCS will play an even bigger role. In fact, aiming at 1.5°C will substantially reduce the remaining carbon budget previously indicated for reaching 2°C. Recent research on the biophysical limits to BECCS and also other negative emissions options such as Direct Air Capture indicates that they all run into their respective bottlenecks—BECCS with respect to land requirements, but on the upside producing bioenergy as a side product, while Direct Air Capture does not need much land, but is more energy-intensive. In order to provide for the negative emissions needed for achieving the 1.5°C target in a sustainable way, a portfolio of negative emissions options needs to minimize unwanted effects on non–climate policy goals.


2011 ◽  
Vol 49 (2) ◽  
pp. 305
Author(s):  
Michael G Massicotte ◽  
Alan L Ross ◽  
Chidinma B Thompson

The Government of Alberta is implementing carbon capture and storage (CCS) technology in order to reduce carbon dioxide emissions. With the enactment of the Carbon Capture and Storage Statutes Amendment Act, 2010 in November 2010, Alberta became the first jurisdiction in Canada to have comprehensive CCS legislation. This article describes CCS technology, considers the impact of the new legislation and potential interjurisdictional conflicts, and briefly compares the CCS legislation of other jurisdictions with Alberta’s legislation.


2013 ◽  
Vol 744 ◽  
pp. 392-395 ◽  
Author(s):  
Hao Xian Malcolm Chan ◽  
Eng Hwa Yap ◽  
Jee Hou Ho

Carbon Capture and Storage (CCS) is one of the global leading methods that could potentially retard the speed of climate change. However, CCS on point sources can only slowdown the rate of increase of atmospheric CO2 concentration. In order to mitigate CO2 released by previous emissions, a more proactive alternative is proposed where CO2 is directly extracted and captured from air Direct Air Capture (DAC). This paper presents a technical overview from our current research of a novel DAC concept which features a phase of axial compression to adapt pre-capture atmospheric air to a level suitable for carbon capture. Also detailed in the paper is the feasibility study addressing several key issues: the energy consumption and overall capturing efficiency of the proposed DAC system.


2021 ◽  
Author(s):  
Tom Terlouw ◽  
Karin Treyer ◽  
christian bauer ◽  
Marco Mazzotti

Prospective energy scenarios usually rely on Carbon Dioxide Removal (CDR) technologies to achieve the climate goals of the Paris Agreement. CDR technologies aim at removing CO2 from the atmosphere in a permanent way. However, the implementation of CDR technologies typically comes along with unintended environmental side-effects such as land transformation or water consumption. These need to be quantified before large-scale implementation of any CDR option by means of Life Cycle Assessment (LCA). Direct Air Carbon Capture and Storage (DACCS) is considered to be among the CDR technologies closest to large-scale implementation, since first pilot and demonstration units have been installed and interactions with the environment are less complex than for biomass related CDR options. However, only very few LCA studies - with limited scope - have been conducted so far to determine the overall life-cycle environmental performance of DACCS. We provide a comprehensive LCA of different low temperature DACCS configurations - pertaining to solid sorbent-based technology - including a global and prospective analysis.


2021 ◽  
Vol 25 (1) ◽  
pp. 574-586
Author(s):  
Marta Bertolini ◽  
Fosca Conti

Abstract Carbon dioxide emissions are strongly related to climate change and increase of global temperature. Whilst a complete change in producing materials and energy and in traffic and transportation systems is already in progress and circular economy concepts are on working, Carbon Capture and Storage (CCS) and Carbon Capture and Utilisation (CCU) represent technically practicable operative strategies. Both technologies have main challenges related to high costs, so that further advanced research is required to obtain feasible options. In this article, the focus is mainly on CCU using microalgae that are able to use CO2 as building block for value-added products such as biofuels, EPS (Extracellular Polymeric Substances), biomaterials and electricity. The results of three strains (UTEX 90, CC 2656, and CC 1010) of the microalgal organism Chlamydomonas reinhardtii are discussed. The results about ideal culture conditions suggest incubation temperature of 30 °C, pH between 6.5 and 7.0, concentrations of acetate between 1.6 and 2.3 g L–1 and of ammonium chloride between 0.1 and 0.5 g L–1, the addition of glucose This green microalga is a valid model system to optimize the production of biomass, carbohydrates and lipids.


1969 ◽  
Vol 17 ◽  
pp. 13-16 ◽  
Author(s):  
Peter Frykman ◽  
Lars Henrik Nielsen ◽  
Thomas Vangkilde-Pedersen

Carbon capture and storage (CCS) is increasingly considered to be a tool that can significantly reduce the emission of CO2. It is viewed as a technology that can contribute to a substantial, global reduction of emitted CO2 within the timeframe that seems available for mitigating the effects of present and continued emission. In order to develop the CCS method the European Union (EU) has supported research programmes for more than a decade, which focus on capture techniques, transport and geological storage. The results of the numerous research projects on geological storage are summarised in a comprehensive best practice manual outlining guidelines for storage in saline aquifers (Chadwick et al. 2008). A detailed directive for geological storage is under implementation (European Commission 2009), and the EU has furthermore established a programme for supporting the development of more than ten large-scale demonstration plants throughout Europe. Geological investigations show that suitable storage sites are present in most European countries. In Denmark initial investigations conducted by the Geological Survey of Denmark and Greenland and private companies indicate that there is significant storage potential at several locations in the subsurface.


2021 ◽  
Vol 61 (2) ◽  
pp. 466
Author(s):  
Prakash Sharma ◽  
Benjamin Gallagher ◽  
Jonathan Sultoon

Australia is in a bind. It is at the heart of the pivot to clean energy: it contains some of the world’s best solar irradiance and vast potential for large-scale carbon capture and storage; it showed the world the path forward with its stationary storage flexibility at the much vaunted Hornsdale power reserve facility; and it moved quickly to capitalise on low-carbon hydrogen production. Yet it remains one of the largest sources for carbon-intensive energy exports in the world. The extractive industries are still delivering thermal coal for power generation and metallurgical coal for carbon-intensive steel making in Asian markets. Even liquefied natural gas’s green credentials are being questioned. Are these two pathways compatible? The treasury and economy certainly benefit. But there is a huge opportunity to redress the source of those funds and jobs, while fulfilling the aspirations to reach net zero emissions by 2050. In our estimates, the low-carbon hydrogen economy could grow to become so substantial that 15% of all energy may be ultimately ‘carried’ by hydrogen by 2050. It is certainly needed to keep the world from breaching 2°C. Can Australia master the hydrogen trade? It is believed that it has a very good chance. Blessed with first-mover investment advantage, and tremendous solar and wind resourcing, Australia is already on a pathway to become a producer of green hydrogen below US$2/kg by 2030. How might it then construct a supply chain to compete in the international market with established trading partners and end users ready to renew old acquaintances? Its route is assessed to mastery of the hydrogen trade, analyse critical competitors for end use and compare costs with other exporters of hydrogen.


2021 ◽  
Author(s):  
Hon Chung Lau

Abstract The world of energy is transitioning from one based on fossil-fuels to one based on renewable energies and hydrogen as an energy carrier. At present, only 11% of the world's final energy consumption and less than 1% of industrial hydrogen come from renewable energies. Our analysis shows that this energy transition will take several decades because of two factors. First, renewable energies give more CO2 savings in replacing fossil fuels in the power sector than producing hydrogen for heat generation in the industry sector. Therefore, significant quantities of green hydrogen will not be available until renewable energies have replaced fossil fuels in power generation. This will take at least two decades for advanced economies and twice as long for developing economies. Second, even if blue hydrogen produced by fossil fuels with carbon capture and storage (CCS) is available in large quantities, it is still more expensive than blue fossil fuels which is also decarbonized by CCS. Consequently, fossil fuels and CCS will continue to play a key role in this energy transition. To accelerate this energy transition, governments should introduce a significant carbon tax or carbon credit to incentivize companies to implement large-scale CCS projects. Nations whose governments adopt such policies will go through this energy transition faster and benefit from the associated job creation and economic opportunities.


2012 ◽  
Vol 248 ◽  
pp. 331-336
Author(s):  
Xian Jin Lai

Carbon capture and storage (CCS) provides important technological solutions to reduce CO2 emission at large scale for high emission countries. CCS technology is being shaped and developed within technological innovation system. The strength and composition of actor-networks in this system make a significant impact on CCS technology development. In order to facilitate the build-up of CCS innovation system, this study analyzes the actors-networks of CCS innovation system in China and the U.S, based on social-networks analysis. It is argued that there are huge differences between China and the U.S’s CCS innovation system. Therefore, the build-up of CCS innovation system in China should take characteristic approaches and policies to accelerate CCS development in the future.


Sign in / Sign up

Export Citation Format

Share Document