scholarly journals Targeting DNA Repair and Chromatin Crosstalk in Cancer Therapy

Cancers ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 381
Author(s):  
Danielle P. Johnson ◽  
Mahesh B. Chandrasekharan ◽  
Marie Dutreix ◽  
Srividya Bhaskara

Aberrant DNA repair pathways that underlie developmental diseases and cancers are potential targets for therapeutic intervention. Targeting DNA repair signal effectors, modulators and checkpoint proteins, and utilizing the synthetic lethality phenomena has led to seminal discoveries. Efforts to efficiently translate the basic findings to the clinic are currently underway. Chromatin modulation is an integral part of DNA repair cascades and an emerging field of investigation. Here, we discuss some of the key advancements made in DNA repair-based therapeutics and what is known regarding crosstalk between chromatin and repair pathways during various cellular processes, with an emphasis on cancer.

2008 ◽  
Vol 8 (3) ◽  
pp. 193-204 ◽  
Author(s):  
Thomas Helleday ◽  
Eva Petermann ◽  
Cecilia Lundin ◽  
Ben Hodgson ◽  
Ricky A. Sharma

2020 ◽  
Vol 21 (18) ◽  
pp. 6684
Author(s):  
Samuele Lodovichi ◽  
Tiziana Cervelli ◽  
Achille Pellicioli ◽  
Alvaro Galli

Alterations in DNA repair pathways are one of the main drivers of cancer insurgence. Nevertheless, cancer cells are more susceptible to DNA damage than normal cells and they rely on specific functional repair pathways to survive. Thanks to advances in genome sequencing, we now have a better idea of which genes are mutated in specific cancers and this prompted the development of inhibitors targeting DNA repair players involved in pathways essential for cancer cells survival. Currently, the pivotal concept is that combining the inhibition of mechanisms on which cancer cells viability depends is the most promising way to treat tumorigenesis. Numerous inhibitors have been developed and for many of them, efficacy has been demonstrated either alone or in combination with chemo or radiotherapy. In this review, we will analyze the principal pathways involved in cell cycle checkpoint and DNA repair focusing on how their alterations could predispose to cancer, then we will explore the inhibitors developed or in development specifically targeting different proteins involved in each pathway, underscoring the rationale behind their usage and how their combination and/or exploitation as adjuvants to classic therapies could help in patients clinical outcome.


2010 ◽  
Vol 10 (7) ◽  
pp. 626-639 ◽  
Author(s):  
K. Aziz ◽  
S. Nowsheen ◽  
A. G. Georgakilas

Blood ◽  
2013 ◽  
Vol 122 (21) ◽  
pp. 120-120
Author(s):  
Tatjana Stankovic ◽  
Davies Nicholas ◽  
Marwan Kwok ◽  
Edward Smith ◽  
Eliot Yates ◽  
...  

Abstract Ataxia Telangiectasia Mutated (ATM) protein coordinates responses to DNA double strand breaks (DSBs) and the ATM-null status caused by biallelic ATM gene inactivation in chronic lymphocytic leukemia (CLL) results in resistance to p53-dependent apoptosis. Accordingly, alternative strategies to target ATM-null CLL are needed. ATM is a serine/threonine protein kinase that synchronises rapid DNA damage response (DDR) to DNA double strand breaks (DSBs) with activation of cell cycle checkpoints, DNA repair and apoptosis via p53 activation. ATM-null cells are defective in a type of DSB repair that involves homologous recombination and rely on co-operating and compensatory DNA repair pathways for their survival. Therefore, inhibition of DNA repair pathways to which CLL cells with loss of ATM signalling become addicted could provide ‘synthetic lethality’ and induce tumour specific killing. Indeed, we have recently shown that inhibition of a single strand break protein PARP induces differential killing of ATM-null CLL tumours. Here we expand the concept of synthetic lethality in ATM-null CLL and address the question of whether ATM-null deficient CLL cells can be targeted by inhibition of the ATR protein that governs responses to post-replicative damage and co-operates with ATM. First, we addressed the status of the ATR pathway in primary CLL cells and consistent with previous findings we observed that initiation of cell cycling is required for both ATR upregulation and activation of ATR target Chk1 in response to replicating stress inducing agent hydroxyurea. We then proceeded with testing viability of the isogenic CLL cell line CII, with and without stable ATM knock down, in the presence or absence of increasing doses of ATR inhibitor AZD6738. We observed a uniform loss of cellular viability in the presence of 1 or 3 μM of inhibitor in ATM-null cells but not in the ATM-wt counterpart. Similar observation was made in primary CLL cells initiated to cycle in the presence of stimulatory oligonucleotide-ODN2006/IL2 support. To confirm the cytotoxic effect of AZD6738 in vivo we used an ATM null primary CLL xenograft model. Representative primary CLL tumour cells with 15% bialleic ATM inactivation, as assessed by percentage of 11q deletion and allelic frequency of ATM mutation 4220T>C, was engrafted in the presence of activated autologous T lymphocytes into 10 NOG mice. Upon detection of engraftment in peripheral blood, animals were treated by oral administration of either AZD6738 (50mg/kg) or vehicle alone over a 2 week period, and tumour load measured by FACS analysis of CD45+ CD19+ human cells in infiltrated spleens. We observed a reduction in tumour cell numbers in AZD6738-treated compared to vehicle-treated spleens and current investigations are underway to determine whether this difference can be attributed to the selective disappearance of CLL population with biallelic ATM loss. We suggest that targeting ATR pathway provides an attractive approach for selective killing of ATM-null CLL cells and that this approach should be considered as a future therapeutic strategy for this CLL subtype. Disclosures: Off Label Use: ATR inhibitor AZD6738 targets ATM-null phenotype inducing synthetic lethality. Jeff:AstraZeneca Pharmaceuticals: Employment, Patents & Royalties. Lau:AstraZeneca Pharmaceuticals: Employment.


Blood ◽  
2011 ◽  
Vol 117 (23) ◽  
pp. 6074-6082 ◽  
Author(s):  
Montaser Shaheen ◽  
Christopher Allen ◽  
Jac A. Nickoloff ◽  
Robert Hromas

Abstract Because cancer at its origin must acquire permanent genomic mutations, it is by definition a disease of DNA repair. Yet for cancer cells to replicate their DNA and divide, which is the fundamental phenotype of cancer, multiple DNA repair pathways are required. This produces a paradox for the cancer cell, where its origin is at the same time its weakness. To overcome this difficulty, a cancer cell often becomes addicted to DNA repair pathways other than the one that led to its initial mutability. The best example of this is in breast or ovarian cancers with mutated BRCA1 or 2, essential components of a repair pathway for repairing DNA double-strand breaks. Because replicating DNA requires repair of DNA double-strand breaks, these cancers have become reliant on another DNA repair component, PARP1, for replication fork progression. The inhibition of PARP1 in these cells results in catastrophic double-strand breaks during replication, and ultimately cell death. The exploitation of the addiction of cancer cells to a DNA repair pathway is based on synthetic lethality and has wide applicability to the treatment of many types of malignancies, including those of hematologic origin. There is a large number of novel compounds in clinical trials that use this mechanism for their antineoplastic activity, making synthetic lethality one of the most important new concepts in recent drug development.


Sign in / Sign up

Export Citation Format

Share Document