scholarly journals The Epithelial–Mesenchymal Transcription Factor SNAI1 Represses Transcription of the Tumor Suppressor miRNA let-7 in Cancer

Cancers ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 1469
Author(s):  
Hanmin Wang ◽  
Evgeny Chirshev ◽  
Nozomi Hojo ◽  
Tise Suzuki ◽  
Antonella Bertucci ◽  
...  

We aimed to determine the mechanism of epithelial–mesenchymal transition (EMT)-induced stemness in cancer cells. Cancer relapse and metastasis are caused by rare stem-like cells within tumors. Studies of stem cell reprogramming have linked let-7 repression and acquisition of stemness with the EMT factor, SNAI1. The mechanisms for the loss of let-7 in cancer cells are incompletely understood. In four carcinoma cell lines from breast cancer, pancreatic cancer, and ovarian cancer and in ovarian cancer patient-derived cells, we analyzed stem cell phenotype and tumor growth via mRNA, miRNA, and protein expression, spheroid formation, and growth in patient-derived xenografts. We show that treatment with EMT-promoting growth factors or SNAI1 overexpression increased stemness and reduced let-7 expression, while SNAI1 knockdown reduced stemness and restored let-7 expression. Rescue experiments demonstrate that the pro-stemness effects of SNAI1 are mediated via let-7. In vivo, nanoparticle-delivered siRNA successfully knocked down SNAI1 in orthotopic patient-derived xenografts, accompanied by reduced stemness and increased let-7 expression, and reduced tumor burden. Chromatin immunoprecipitation demonstrated that SNAI1 binds the promoters of various let-7 family members, and luciferase assays revealed that SNAI1 represses let-7 transcription. In conclusion, the SNAI1/let-7 axis is an important component of stemness pathways in cancer cells, and this study provides a rationale for future work examining this axis as a potential target for cancer stem cell-specific therapies.

2020 ◽  
Author(s):  
H Wang ◽  
E Chirshev ◽  
N Hojo ◽  
T Suzuki ◽  
A Bertucci ◽  
...  

AbstractWe aimed to determine the mechanism of epithelial-mesenchymal transition (EMT)-induced stemness in cancer cells. Cancer relapse and metastasis are caused by rare stem-like cells within tumors. Studies of stem cell reprogramming have linked let-7 repression and acquisition of stemness with the EMT factor, SNAI1. The mechanisms for the loss of let-7 in cancer cells are incompletely understood. In four carcinoma cell lines from breast cancer, pancreatic cancer and ovarian cancer and in ovarian cancer patient-derived cells, we analyzed stem cell phenotype and tumor growth via mRNA, miRNA, and protein expression, spheroid formation, and growth in patient-derived xenografts. We show that treatment with EMT-promoting growth factors or SNAI1 overexpression increased stemness and reduced let-7 expression, while SNAI1 knockdown reduced stemness and restored let-7 expression. Rescue experiments demonstrate that the pro-stemness effects of SNAI1 are mediated via let-7. In vivo, nanoparticle-delivered siRNA successfully knocked down SNAI1 in orthotopic patient-derived xenografts, accompanied by reduced stemness and increased let-7 expression, and reduced tumor burden. Chromatin immunoprecipitation demonstrated that SNAI1 binds the promoters of various let-7 family members, and luciferase assays revealed that SNAI1 represses let-7 transcription. In conclusion, the SNAI1/let-7 axis is an important component of stemness pathways in cancer cells, and this study provides a rationale for future work examining this axis as a potential target for cancer stem cell-specific therapies.Novelty and ImpactThis study provides new insight into molecular mechanisms by which EMT transcription factor SNAI1 exerts its pro-stemness effects in cancer cells, demonstrating its potential as a stem cell-directed target for therapy. In vitro and in vivo, mesoporous silica nanoparticle-mediated SNAI1 knockdown resulted in restoration of let-7 miRNA, inhibiting stemness and reducing tumor burden. Our studies validate in vivo nanoparticle-delivered RNAi targeting the SNAI1/let-7 axis as a clinically relevant approach.


Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1421-1421
Author(s):  
Min Soon Cho ◽  
Qianghua Hu ◽  
Rajesha Rupaimoole ◽  
Anil Sood ◽  
Vahid Afshar-Kharghan

Abstract We have shown that complement component 3 (C3) is expressed in malignant ovarian epithelial cells and enhances cell proliferation in vitro and tumor growth in vivo. C3 is secreted by cancer cells into the tumor microenvironment and promotes tumor growth through an autocrine loop. To understand the mechanism of upregulation of C3 expression in malignant epithelial cells, we studied the transcriptional regulation of C3, and found that TWIST1, a major regulator of EMT, binds to the C3 promoter and regulates C3 transcription. Knockdown of the TWIST1 gene reduced C3 mRNA, and TWIST1 overexpression increased C3 mRNA. TWIST1 promotes epithelial-mesenchymal transition (EMT) during normal development and in metastasis of malignant tumors. An important marker of EMT is a reduction in the surface expression of E-cadherin on cells facilitating migration and invasion of these cells. TWIST1 is a transcriptional repressor of E-cadherin; and because TWIST1 increases C3 expression, we investigated whether C3 is also a negative regulator of E-cadherin expression. We overexpressed C3 in ovarian cancer cells by stable transduction of lentivirus carrying C3 cDNA. Overexpression of C3 was associated with 32% reduction in the expression of E-cadherin resulting in enhanced migration ability of cells by 2.3 folds and invasiveness by 1.75 folds, as compared to control cells transduced with control lentivirus. To investigate whether TWIST1-induced reduction in E-cadherin is C3-mediated or not, we studied the effect of TWIST1 overexpression simultaneous with C3 knockdown in ovarian cancer cells. Overexpression of TWIST1 alone resulted in 70% reduction in E-cadherin mRNA and this was completely reversed after simultaneous C3 knockdown in these cells. To investigate the correlation between C3 and TWIST1 in vivo, we studied the co-expression of these two proteins in mouse embryos (physiologic EMT) and in malignant tumors (pathologic EMT). Given the role of EMT in embryogenesis we immunostained mouse embryos at different stages of development, using antibodies against TWIST1 or C3. Transverse section of 9.5-day post-coitum (9.5dpc) mouse embryos showed co-expression of TWIST1 and C3 in otocyst (ot) and hindbrain (hb) of neural crest. In the whole-mounted 11.5dpc mouse embryos, C3 and TWIST1 were co-expressed in limb buds. Given the role of EMT in malignancy, tumors induced in mice after intraperitoneal injection of murine ovarian cancer cells were resected and immunostained for C3 and TWIST1 proteins. TWIST1 and C3 co-localized at tumor edges, where EMT and tumor cells migration occur. Taken together, these data provide evidence that TWIST1 regulates C3 expression, and C3 promotes EMT through E-cadherin. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 10 ◽  
Author(s):  
Arthur-Quan Tran ◽  
Stephanie A. Sullivan ◽  
Leo Li-Ying Chan ◽  
Yajie Yin ◽  
Wenchuan Sun ◽  
...  

SPR965 is an inhibitor of PI3K and mTOR C1/C2 and has demonstrated anti-tumorigenic activity in a variety of solid tumors. We sought to determine the effects of SPR965 on cell proliferation and tumor growth in human serous ovarian cancer cell lines and a transgenic mouse model of high grade serous ovarian cancer (KpB model) and identify the underlying mechanisms by which SPR965 inhibits cell and tumor growth. SPR965 showed marked anti-proliferative activity by causing cell cycle arrest and inducing cellular stress in ovarian cancer cells. Treatment with SPR965 significantly inhibited tumor growth in KpB mice, accompanied by downregulation of Ki67 and VEGF and upregulation of Bip expression in ovarian tumors. SPR965 also inhibited adhesion and invasion through induction of the epithelial–mesenchymal transition process. As expected, downregulation of phosphorylation of AKT and S6 was observed in SPR965-treated ovarian cancer cells and tumors. Our results suggest that SPR965 has significant anti-tumorigenic effects in serous ovarian cancer in vitro and in vivo. Thus, SPR965 should be evaluated as a promising targeted agent in future clinical trials of ovarian cancer.


2021 ◽  
Vol 12 (2) ◽  
Author(s):  
Jing Cai ◽  
Lanqing Gong ◽  
Guodong Li ◽  
Jing Guo ◽  
Xiaoqing Yi ◽  
...  

AbstractThe poor prognosis of ovarian cancer is mainly due to metastasis, and the specific mechanism underlying ovarian cancer metastasis is not clear. Ascites-derived exosomes (ADEs) play an important role in the progression of ovarian cancer, but the mechanism is unknown. Here, we found that ADEs promoted ovarian cancer metastasis not only in vitro but also in vivo. This promotive function was based on epithelial–mesenchymal transition (EMT) of ovarian cancer cells. Bioinformatics analysis of RNA sequencing microarray data indicated that miR-6780b-5p may be the key microRNA (miRNA) in ADEs that facilitates cancer metastasis. Moreover, the expression of exosomal miR-6780b-5p correlated with tumor metastasis in ovarian cancer patients. miR-6780b-5p overexpression promoted and miR-6780b-5p downregulation suppressed EMT of ovarian cancer cells. These results suggest that ADEs transfer miR-6780b-5p to ovarian cancer cells, promoting EMT and finally facilitating ovarian cancer metastasis.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Dongli Li ◽  
Junxiu Zhang ◽  
Zijia Liu ◽  
Yuanyuan Gong ◽  
Zhi Zheng

Abstract Background and aim Subretinal fibrosis resulting from neovascular age-related macular degeneration (nAMD) is one of the major causes of serious and irreversible vision loss worldwide, and no definite and effective treatment exists currently. Retinal pigmented epithelium (RPE) cells are crucial in maintaining the visual function of normal eyes and its epithelial–mesenchymal transition (EMT) is associated with the pathogenesis of subretinal fibrosis. Stem cell-derived exosomes have been reported to play a crucial role in tissue fibrosis by transferring their molecular contents. This study aimed to explore the effects of human umbilical cord-derived mesenchymal stem cell exosomes (hucMSC-Exo) on subretinal fibrosis in vivo and in vitro and to investigate the anti-fibrotic mechanism of action of hucMSC-Exo. Methods In this study, human umbilical cord-derived mesenchymal stem cells (hucMSCs) were successfully cultured and identified, and exosomes were isolated from the supernatant by ultracentrifugation. A laser-induced choroidal neovascularization (CNV) and subretinal fibrosis model indicated that the intravitreal administration of hucMSC-Exo effectively alleviated subretinal fibrosis in vivo. Furthermore, hucMSC-Exo could efficaciously suppress the migration of retinal pigmented epithelial (RPE) cells and promote the mesenchymal–epithelial transition by delivering miR-27b-3p. The latent binding of miR-27b-3p to homeobox protein Hox-C6 (HOXC6) was analyzed by bioinformatics prediction and luciferase reporter assays. Results This study showed that the intravitreal injection of hucMSC-Exo effectively ameliorated laser-induced CNV and subretinal fibrosis via the suppression of epithelial–mesenchymal transition (EMT) process. In addition, hucMSC-Exo containing miR-27b repressed the EMT process in RPE cells induced by transforming growth factor-beta2 (TGF-β2) via inhibiting HOXC6 expression. Conclusions The present study showed that HucMSC-derived exosomal miR-27b could reverse the process of EMT induced by TGF-β2 via inhibiting HOXC6, indicating that the exosomal miR-27b/HOXC6 axis might play a vital role in ameliorating subretinal fibrosis. The present study proposed a promising therapeutic agent for treating ocular fibrotic diseases and provided insights into the mechanism of action of hucMSC-Exo on subretinal fibrosis.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii98-ii98
Author(s):  
Anne Marie Barrette ◽  
Alexandros Bouras ◽  
German Nudelman ◽  
Zarmeen Mussa ◽  
Elena Zaslavsky ◽  
...  

Abstract Glioblastoma (GBM) remains an incurable disease, in large part due to its malignant infiltrative spread, and current clinical therapy fails to target the invasive nature of tumor cells in disease progression and recurrence. Here, we use the YAP-TEAD inhibitor Verteporfin to target a convergence point for regulating tumor invasion/metastasis and establish the robust anti-invasive therapeutic efficacy of this FDA-approved drug and its survival benefit across several preclinical glioma models. Using patient-derived GBM cells and orthotopic xenograft models (PDX), we show that Verteporfin treatment disrupts YAP/TAZ-TEAD activity and processes related to cell adhesion, migration and epithelial-mesenchymal transition. In-vitro, Verteporfin impairs tumor migration, invasion and motility dynamics. In-vivo, intraperitoneal administration of Verteporfin in mice with orthotopic PDX tumors shows consistent drug accumulation within the brain and decreased infiltrative tumor burden, across three independent experiments. Interestingly, PDX tumors with impaired invasion after Verteporfin treatment downregulate CDH2 and ITGB1 adhesion protein levels within the tumor microenvironment. Finally, Verteporfin treatment confers survival benefit in two independent PDX models: as monotherapy in de-novo GBM and in combination with standard-of-care chemoradiation in recurrent GBM. These findings indicate potential therapeutic value of this FDA-approved drug if repurposed for GBM patients.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 172
Author(s):  
Izabela Papiewska-Pająk ◽  
Patrycja Przygodzka ◽  
Damian Krzyżanowski ◽  
Kamila Soboska ◽  
Izabela Szulc-Kiełbik ◽  
...  

During metastasis, cancer cells undergo phenotype changes in the epithelial-mesenchymal transition (EMT) process. Extracellular vesicles (EVs) released by cancer cells are the mediators of intercellular communication and play a role in metastatic process. Knowledge of factors that influence the modifications of the pre-metastatic niche for the migrating carcinoma cells is important for prevention of metastasis. We focus here on how cancer progression is affected by EVs released from either epithelial-like HT29-cells or from cells that are in early EMT stage triggered by Snail transcription factor (HT29-Snail). We found that EVs released from HT29-Snail, as compared to HT29-pcDNA cells, have a different microRNA profile. We observed the presence of interstitial pneumonias in the lungs of mice injected with HT29-Snail cells and the percent of mice with lung inflammation was higher after injection of HT29-Snail-EVs. Incorporation of EVs released from HT29-pcDNA, but not released from HT29-Snail, leads to the increased secretion of IL-8 from macrophages. We conclude that Snail modifications of CRC cells towards more invasive phenotype also alter the microRNA cargo of released EVs. The content of cell-released EVs may serve as a biomarker that denotes the stage of CRC and EVs-specific microRNAs may be a target to prevent cancer progression.


Blood ◽  
2006 ◽  
Vol 108 (12) ◽  
pp. 3906-3912 ◽  
Author(s):  
Jorg A. Kruger ◽  
Charles D. Kaplan ◽  
Yunping Luo ◽  
He Zhou ◽  
Dorothy Markowitz ◽  
...  

AbstractRecently, the cancer stem cell hypothesis has gained significant recognition as the descriptor of tumorigenesis. Although previous studies relied on transplanting human or rat tumor cells into immunecompromised mice, our study used the Hoechst 33342 dye–based side population (SP) technique to isolate and transplant stem cell–like cancer cells (SCLCCs) from the 4T1 and NXS2 murine carcinoma cell lines into the immune-competent microenvironment of syngeneic mice. 4T1 cells displayed an SP of 2% with a Sca-1highc-Kit–CD45– phenotype, whereas NXS2 cells contained an SP of 0.2% with a Sca-1highCD24highc-Kit–CD45–GD high2 phenotype. Reverse transcription–polymerase chain reaction (RT-PCR) further revealed up-regulation in SP cells of ABCG2, Sca-1, Wnt-1, and TGF-β2. Additionally, 4T1 and NXS2 SP cells exhibited increased resistance to chemotherapy, and 4T1 SP cells also showed an increased ability to efflux doxorubicin, which correlated with a selective increase in the percentage of SP cells found in the tumors of doxorubicin-treated mice. Most importantly, SP cells showed a markedly higher repopulation and tumorigenic potential in vivo, which correlated with an increased number of cells in the SP compartment of SP-derived tumors. Taken together, these results show that we successfully characterized SCLCCs from 2 murine carcinoma cell lines in the immune-competent microenvironment of syngeneic mice.


Sign in / Sign up

Export Citation Format

Share Document