inflammatory state
Recently Published Documents


TOTAL DOCUMENTS

1121
(FIVE YEARS 592)

H-INDEX

53
(FIVE YEARS 11)

2022 ◽  
Vol 34 (1) ◽  
Author(s):  
Mohammed M. Masoud ◽  
Hany A. Sayed ◽  
Hatem A. El Masry ◽  
Shaimaa A. Abdelkareem

Abstract Background and aim HCV infection is associated with increased risk of ischemic cerebral stroke. HCV stroked patients are younger with a lower burden of classical risk factors and higher levels of systemic inflammation. The present study aimed to discover the association between HCV infection functional outcome of stroke. Patients and methods The present prospective study included 60 patients with acute ischemic stroke. All patients were subjected to careful history taking and through clinical and neurological examination. Stroke severity at presentation was assessed using National Institute of Health Stroke Scale (NIHSS). Quantitative HCV RNA test was used to diagnose HCV infection. The prognosis of the studied patients was 3 months after treatment using modified Rankin scale (mRS) for neurologic disability. Results The present study was conducted on 60 patients with ischemic stroke. They comprised 13 patients (21.7%) with HCV and 47 patients without. Stroke patients with HCV had significantly higher frequency of carotid artery stenosis, higher NIHSS (17.9 ± 6.9 versus 9.9 ± 5.3, p < 0.001) and higher frequency of severe stroke (46.1% versus 4.3%, p = 0.001) when compared with patients without HCV. Logistic regression analysis identified patients’ sex, NIHSS and HCV as significant predictors of outcome in univariate analysis. However, in multivariate analysis, only NIHSS proved to be significant. Conclusions The present study suggests a significant link between chronic HCV infection and ischemic stroke severity and poor outcome. This is probably related to the pathogenic effects of the chronic inflammatory state induced by HCV infection on the cerebral microvasculature.


Molecules ◽  
2022 ◽  
Vol 27 (2) ◽  
pp. 547
Author(s):  
Francine Medjiofack Djeujo ◽  
Valeria Francesconi ◽  
Maddalena Gonella ◽  
Eugenio Ragazzi ◽  
Michele Tonelli ◽  
...  

Diabetes mellitus is characterized by chronic hyperglycemia that promotes ROS formation, causing severe oxidative stress. Furthermore, prolonged hyperglycemia leads to glycation reactions with formation of AGEs that contribute to a chronic inflammatory state. This research aims to evaluate the inhibitory activity of α-mangostin and four synthetic xanthenone derivatives against glycation and oxidative processes and on α-glucosidase, an intestinal hydrolase that catalyzes the cleavage of oligosaccharides into glucose molecules, promoting the postprandial glycemic peak. Antiglycation activity was evaluated using the BSA assay, while antioxidant capacity was detected with the ORAC assay. The inhibition of α-glucosidase activity was studied with multispectroscopic methods along with inhibitory kinetic analysis. α-Mangostin and synthetic compounds at 25 µM reduced the production of AGEs, whereas the α-glucosidase activity was inhibited only by the natural compound. α-Mangostin decreased enzymatic activity in a concentration-dependent manner in the micromolar range by a reversible mixed-type antagonism. Circular dichroism revealed a rearrangement of the secondary structure of α-glucosidase with an increase in the contents of α-helix and random coils and a decrease in β-sheet and β-turn components. The data highlighted the anti-α-glucosidase activity of α-mangostin together with its protective effects on protein glycation and oxidation damage.


npj Vaccines ◽  
2022 ◽  
Vol 7 (1) ◽  
Author(s):  
Maxwell L. Neal ◽  
Fergal J. Duffy ◽  
Ying Du ◽  
John D. Aitchison ◽  
Kenneth D. Stuart

AbstractIdentifying preimmunization biological characteristics that promote an effective vaccine response offers opportunities for illuminating the critical immunological mechanisms that confer vaccine-induced protection, for developing adjuvant strategies, and for tailoring vaccination regimens to individuals or groups. In the context of malaria vaccine research, studying preimmunization correlates of protection can help address the need for a widely effective malaria vaccine, which remains elusive. In this study, common preimmunization correlates of protection were identified using transcriptomic data from four independent, heterogeneous malaria vaccine trials in adults. Systems-based analyses showed that a moderately elevated inflammatory state prior to immunization was associated with protection against malaria challenge. Functional profiling of protection-associated genes revealed the importance of several inflammatory pathways, including TLR signaling. These findings, which echo previous studies that associated enhanced preimmunization inflammation with protection, illuminate common baseline characteristics that set the stage for an effective vaccine response across diverse malaria vaccine strategies in adults.


2022 ◽  
Vol 23 (2) ◽  
pp. 866
Author(s):  
Franziska E. Uhl ◽  
Lotte Vanherle ◽  
Frank Matthes ◽  
Anja Meissner

Heart failure (HF) is among the main causes of death worldwide. Alterations of sphingosine-1-phosphate (S1P) signaling have been linked to HF as well as to target organ damage that is often associated with HF. S1P’s availability is controlled by the cystic fibrosis transmembrane regulator (CFTR), which acts as a critical bottleneck for intracellular S1P degradation. HF induces CFTR downregulation in cells, tissues and organs, including the lung. Whether CFTR alterations during HF also affect systemic and tissue-specific S1P concentrations has not been investigated. Here, we set out to study the relationship between S1P and CFTR expression in the HF lung. Mice with HF, induced by myocardial infarction, were treated with the CFTR corrector compound C18 starting ten weeks post-myocardial infarction for two consecutive weeks. CFTR expression, S1P concentrations, and immune cell frequencies were determined in vehicle- and C18-treated HF mice and sham controls using Western blotting, flow cytometry, mass spectrometry, and qPCR. HF led to decreased pulmonary CFTR expression, which was accompanied by elevated S1P concentrations and a pro-inflammatory state in the lungs. Systemically, HF associated with higher S1P plasma levels compared to sham-operated controls and presented with higher S1P receptor 1-positive immune cells in the spleen. CFTR correction with C18 attenuated the HF-associated alterations in pulmonary CFTR expression and, hence, led to lower pulmonary S1P levels, which was accompanied by reduced lung inflammation. Collectively, these data suggest an important role for the CFTR-S1P axis in HF-mediated systemic and pulmonary inflammation.


2022 ◽  
Author(s):  
Seddik Hammad ◽  
Christoph Ogris ◽  
Amnah Othman ◽  
Pia Erdoesi ◽  
Wolfgang Schmidt-Heck ◽  
...  

The liver has a remarkable capacity to regenerate and thus compensates for repeated injuries through toxic chemicals, drugs, alcohol or malnutrition for decades. However, largely unknown is how and when alterations in the liver occur due to tolerable damaging insults. To that end, we induced repeated liver injuries over ten weeks in a mouse model injecting carbon tetrachloride (CCl4) twice a week. We lost 10% of the study animals within the first six weeks, which was accompanied by a steady deposition of extracellular matrix (ECM) regardless of metabolic activity of the liver. From week six onwards, all mice survived, and in these mice ECM deposition was rather reduced, suggesting ECM remodeling as a liver response contributing to better coping with repeated injuries. The data of time-resolved paired transcriptome and proteome profiling of 18 mice was subjected to multi-level network inference, using Knowledge guided Multi-Omics Network inference (KiMONo), identified multi-level key markers exclusively associated with the injury-tolerant liver response. Interestingly, pathways of cancer and inflammation were lighting up and were validated using independent data sets compiled of 1034 samples from publicly available human cohorts. A yet undescribed link to lipid metabolism in this damage-tolerant phase was identified. Immunostaining revealed an unexpected accumulation of small lipid droplets (microvesicular steatosis) in parallel to a recovery of catabolic processes of the liver to pre-injury levels. Further, mild inflammation was experimentally validated. Taken together, we identified week six as a critical time point to switch the liver response program from an acute response that fosters ECM accumulation to a tolerant 'survival' phase with pronounced deposition of small lipid droplets in hepatocytes potentially protecting against the repetitive injury with toxic chemicals. Our data suggest that microsteatosis formation plus a mild inflammatory state represent biomarkers and probably functional liver requirements to resist chronic damage.


2022 ◽  
Vol 12 ◽  
Author(s):  
Viviana Marzaioli ◽  
Mary Canavan ◽  
Achilleas Floudas ◽  
Keelin Flynn ◽  
Ronan Mullan ◽  
...  

Dendritic cells (DC) have a key role in the initiation and progression of inflammatory arthritis (IA). In this study, we identified a DC population that derive from monocytes, characterized as CD209/CD14+ DC, expressing classical DC markers (HLADR, CD11c) and the Mo-DC marker (CD209), while also retaining the monocytic marker CD14. This CD209/CD14+ DC population is present in the circulation of Healthy Control (HC), with increased frequency in Rheumatoid Arthritis (RA) and Psoriatic arthritic (PsA) patients. We demonstrate, for the first time, that circulatory IA CD209/CD14+ DC express more cytokines (IL1β/IL6/IL12/TNFα) and display a unique chemokine receptor expression and co-expression profiles compared to HC. We demonstrated that CD209/CD14+ DC are enriched in the inflamed joint where they display a unique inflammatory and maturation phenotype, with increased CD40 and CD80 and co-expression of specific chemokine receptors, displaying unique patterns between PsA and RA. We developed a new protocol of magnetic isolation and expansion for CD209+ DC from blood and identified transcriptional differences involved in endocytosis/antigen presentation between RA and PsA CD209+ DC. In addition, we observed that culture of healthy CD209+ DC with IA synovial fluid (SF), but not Osteoarthritis (OA) SF, was sufficient to induce the development of CD209/CD14+ DC, leading to a poly-mature DC phenotype. In addition, differential effects were observed in terms of chemokine receptor and chemokine expression, with healthy CD209+ DC displaying increased expression/co-expression of CCR6, CCR7, CXCR3, CXCR4 and CXCR5 when cultured with RA SF, while an increase in the chemokines CCR3, CXCL10 and CXCL11 was observed when cultured with PsA SF. This effect may be mediated in part by the observed differential increase in chemokines expressed in RA vs PsA SF. Finally, we observed that the JAK/STAT pathway, but not the NF-κB pathway (driven by TNFα), regulated CD209/CD14+ DC function in terms of activation, inflammatory state, and migratory capacity. In conclusion, we identified a novel CD209/CD14+ DC population, which is active in the circulation of RA and PsA, an effect potentiated once they enter the joint. Furthermore, we demonstrated that JAK/STAT inhibition can be used as a therapeutic strategy to decrease the inflammatory state of the pathogenic CD209/CD14+ DC.


2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Youxia Liu ◽  
Hongfen Li ◽  
Huyan Yu ◽  
Fanghao Wang ◽  
Junya Jia ◽  
...  

Abstract Background The addition of sialic acid alters IgG from a pro-inflammatory state to an anti-inflammatory state. However, there is a lack of research on the changes of IgG sialylation in IgA nephropathy (IgAN). Methods This study included a total of 184 IgAN patients. The sialylated IgG (SA-IgG), IgG-galactose-deficient IgA1 complex (IgG-Gd-IgA1-IC), IL-6, TNF-α, and TGF-β were detected using commercial ELISA kits. SA-IgG, non-sialylated IgG (NSA-IgG), sialylated IgG-IgA1 complex (SA-IgG-IgA1), and non-sialylated IgG-IgA1 complex (NSA-IgG-IgA1) were purified from IgAN patients and healthy controls (HCs). Results The mean SA-IgG levels in plasma and B lymphocytes in IgAN patients were significantly higher than those of healthy controls. A positive correlation was found between SA-IgG levels in plasma and B lymphocytes. In vitro, the results showed that the release of IgG-Gd-IgA1-IC was significantly decreased in peripheral blood mononuclear cells (PBMCs) cultured with SA-IgG from both IgAN patients and healthy controls. The proliferation ability and the release of IL-6, TNF-α, and TGF-β in human mesangial cells (HMCs) were measured after stimulating with SA-IgG-IgA1-IC and NSA-IgG-IgA1-IC. The mesangial cell proliferation levels induced by NSA-IgG-IgA1-IC derived from IgAN patients were significantly higher than those caused by SA-IgG-IgA1-IC derived from IgAN patients and healthy controls. Compared with NSA-IgG-IgA1 from healthy controls, IgAN-NSA-IgG-IgA1 could significantly upregulate the expression of IL-6 and TNF-α in mesangial cells. The data showed that there weren’t any significant differences in the levels of IL-6, TNF-α, and TGF-β when treated with IgAN-SA-IgG-IgA1 and HC-NSA-IgG-IgA1. Conclusions The present study demonstrated that the sialylation of IgG increased in patients with IgA nephropathy. It exerted an inhibitory effect on the formation of Gd-IgA1-containing immune complexes in PBMCs and the proliferation and inflammation activation in mesangial cells.


2022 ◽  
Author(s):  
Chad Pickering ◽  
Bo Zhou ◽  
Gege Xu ◽  
Rachel Rice ◽  
Hector Huang ◽  
...  

Glycosylation is the most common form of post-translational modification of proteins, critically affecting their structure and function. Using liquid chromatography and mass spectrometry for high-resolution site-specific quantification of glycopeptides coupled with high-throughput artificial intelligence-powered data processing, we analyzed differential protein glyco-isoform distributions of 597 abundant serum glycopeptides and non-glycosylated peptides in 50 individuals who had been seriously ill with COVID-19 and in 22 individuals who had recovered after an asymptomatic course of COVID-19. As additional comparison reference phenotypes, we included 12 individuals with a history of infection with a common cold coronavirus, 16 patients with bacterial sepsis, and 15 healthy subjects without history of coronavirus exposure. We found statistically significant differences, at FDR<0.05, for normalized abundances of 374 of the 597 peptides and glycopeptides interrogated, between symptomatic and asymptomatic COVID-19 patients. Similar statistically significant differences were seen when comparing symptomatic COVID-19 patients to healthy controls (350 differentially abundant peptides and glycopeptides) and common cold coronavirus seropositive subjects (353 differentially abundant peptides and glycopeptides). Among healthy controls and sepsis patients, 326 peptides and glycopeptides were found to be differentially abundant, of which 277 overlapped with biomarkers that showed differential expression between symptomatic COVID-19 cases and healthy controls. Among symptomatic COVID-19 cases and sepsis patients, 101 glycopeptide and peptide biomarkers were found to be statistically significantly abundant. Using both supervised and unsupervised machine learning techniques, we found specific glycoprotein profiles to be strongly predictive of symptomatic COVID-19 infection. LASSO-regularized multivariable logistic regression and K-means clustering yielded accuracies of 100% in an independent test set and of 96% overall, respectively. Our findings are consistent with the interpretation that a majority of glycoprotein modifications observed which are shared among symptomatic COVID-19 and sepsis patients likely represent a generic consequence of a severe systemic immune and inflammatory state. However, there are glyco-isoform changes that are specific and particular to severe COVID-19 infection. These may be representative of either COVID-19-specific consequences or of susceptibility to or predisposition for a severe course of the disease. Our findings support the potential value of glycoproteomic biomarkers in the biomedical understanding, and, potentially, the clinical management of serious acute infectious conditions.


2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Júlia Aranyó ◽  
Victor Bazan ◽  
Gemma Lladós ◽  
Maria Jesús Dominguez ◽  
Felipe Bisbal ◽  
...  

AbstractInappropriate sinus tachycardia (IST) is a common observation in patients with post-COVID-19 syndrome (PCS) but has not yet been fully described to date. To investigate the prevalence and the mechanisms underlying IST in a prospective population of PCS patients. Consecutive patients admitted to the PCS Unit between June and December 2020 with a resting sinus rhythm rate ≥ 100 bpm were prospectively enrolled in this study and further examined by an orthostatic test, 2D echocardiography, 24-h ECG monitoring (heart rate variability was a surrogate for cardiac autonomic activity), quality-of-life and exercise capacity testing, and blood sampling. To assess cardiac autonomic function, a 2:1:1 comparative sub-analysis was conducted against both fully recovered patients with previous SARS-CoV-2 infection and individuals without prior SARS-CoV-2 infection. Among 200 PCS patients, 40 (20%) fulfilled the diagnostic criteria for IST (average age of 40.1 ± 10 years, 85% women, 83% mild COVID-19). No underlying structural heart disease, pro-inflammatory state, myocyte injury, or hypoxia were identified. IST was accompanied by a decrease in most heart rate variability parameters, especially those related to cardiovagal tone: pNN50 (cases 3.2 ± 3 vs. recovered 10.5 ± 8 vs. non-infected 17.3 ± 10; p < 0.001) and HF band (246 ± 179 vs. 463 ± 295 vs. 1048 ± 570, respectively; p < 0.001). IST is prevalent condition among PCS patients. Cardiac autonomic nervous system imbalance with decreased parasympathetic activity may explain this phenomenon.


2022 ◽  
Author(s):  
Pedro-Antonio Regidor ◽  
Xavier de la Rosa ◽  
Anna Mueller ◽  
Manuela Sailer ◽  
Fernando Gonzalez Santos ◽  
...  

Abstract Introduction: Polycystic Ovary Syndrome (PCOS) is an endocrinologic disorder that affects 5-15 % of women of their reproductive age and is a frequent cause of infertility. Major symptoms include hyperandrogenism, ovulatory dysfunction, and often obesity and/or insulin resistance. PCOS also represents a state of chronic low-grade inflammation that is closely interlinked with the metabolic features. "Classical" pro-inflammatory lipid mediators like prostaglandins (PG), leukotrienes (LT), or thromboxanes (TX) are derived from arachidonic acid (AA) and are crucial for the initial response. Resolution processes are driven by four families of so-called specialized pro-resolving mediators (SPMs): resolvins, maresins, lipoxins, and protectins. The study aimed to establish lipid mediator profiles of PCOS patients compared to healthy women to identify differences in their resolutive and pro-inflammatory lipid parameters. Material and Methods: Fifteen female patients (18-45 years) were diagnosed with PCOS according to Rotterdam criteria, and five healthy women, as comparator group, were recruited for the study. The main outcome measures were: Pro-inflammatory lipid mediators (PG, LT, TX) and their precursor AA; SPMs (Resolvins, Maresins, Protectins, Lipoxins), their precursors EPA, DHA, DPA, and their active biosynthesis pathway intermediates (18-HEPE, 17-HDHA, 14-HDHA).Results: The level of pro-inflammatory parameters in serum was significantly higher in PCOS-affected women. The ratio [(sum of pro-inflammatory molecules) / (sum of SPMs plus hydroxylated intermediates)] reflecting the inflammatory state was significantly lower in the group of healthy women.Conclusion: There is a strong pro-inflammatory state in PCOS patients. Further research will clarify whether supplementation with SPMs or their precursors may improve this state.


Sign in / Sign up

Export Citation Format

Share Document