scholarly journals Involvement of Thyroid Hormones in Brain Development and Cancer

Cancers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 2693
Author(s):  
Gabriella Schiera ◽  
Carlo Maria Di Liegro ◽  
Italia Di Liegro

The development and maturation of the mammalian brain are regulated by thyroid hormones (THs). Both hypothyroidism and hyperthyroidism cause serious anomalies in the organization and function of the nervous system. Most importantly, brain development is sensitive to TH supply well before the onset of the fetal thyroid function, and thus depends on the trans-placental transfer of maternal THs during pregnancy. Although the mechanism of action of THs mainly involves direct regulation of gene expression (genomic effects), mediated by nuclear receptors (THRs), it is now clear that THs can elicit cell responses also by binding to plasma membrane sites (non-genomic effects). Genomic and non-genomic effects of THs cooperate in modeling chromatin organization and function, thus controlling proliferation, maturation, and metabolism of the nervous system. However, the complex interplay of THs with their targets has also been suggested to impact cancer proliferation as well as metastatic processes. Herein, after discussing the general mechanisms of action of THs and their physiological effects on the nervous system, we will summarize a collection of data showing that thyroid hormone levels might influence cancer proliferation and invasion.

2014 ◽  
Vol 369 (1652) ◽  
pp. 20130512 ◽  
Author(s):  
Jaehoon Shin ◽  
Guo-li Ming ◽  
Hongjun Song

DNA methylation is a crucial epigenetic mark in mammalian development, genomic imprinting, X-inactivation, chromosomal stability and suppressing parasitic DNA elements. DNA methylation in neurons has also been suggested to play important roles for mammalian neuronal functions, and learning and memory. In this review, we first summarize recent discoveries and fundamental principles of DNA modifications in the general epigenetics field. We then describe the profiles of different DNA modifications in the mammalian brain genome. Finally, we discuss roles of DNA modifications in mammalian brain development and function.


2020 ◽  
Vol 3 (1) ◽  
pp. 1-11
Author(s):  
Mami Noda

AbstractGlial cells play a significant role in the link between the endocrine and nervous systems. Among hormones, thyroid hormones (THs) are critical for the regulation of development and differentiation of neurons and glial cells, and hence for development and function of the central nervous system (CNS). THs are transported into the CNS, metabolized in astrocytes and affect various cell types in the CNS including astrocyte itself. Since 3,3’,5-triiodo-L-thyronine (T3) is apparently released from astrocytes in the CNS, it is a typical example of glia-endocrine system.The prevalence of thyroid disorders increases with age. Both hypothyroidism and hyperthyroidism are reported to increase the risk of cognitive impairment or Alzheimer’s disease (AD). Therefore, understanding the neuroglial effects of THs may help to solve the problem why hypothyroidism or hyperthyroidism may cause mental disorders or become a risk factor for cognitive impairment. In this review, THs are focused among wide variety of hormones related to brain function, and recent advancement in glioendocrine system is described.


2020 ◽  
Vol 7 (1) ◽  
pp. 1-23 ◽  
Author(s):  
Eloisa Salvo-Romero ◽  
Patricia Stokes ◽  
Mélanie G. Gareau

The vast diversity of bacteria that inhabit the gastrointestinal tract strongly influence host physiology, not only nutrient metabolism but also immune system development and function. The complexity of the microbiota is matched by the complexity of the host immune system, where they have coevolved to maintain homeostasis ensuring the mutualistic host-microbial relationship. Numerous studies in recent years investigating the gut-brain axis have demonstrated an important role for the gut microbiota in modulating brain development and function, with the immune system serving as an important coordinator of these interactions. Gut bacteria can modulate not only gut-resident immune cells but also brain-resident immune cells. Activation of the immune system in the gut and in the brain are implicated in responses to neuroinflammation, brain injury, as well as changes in neurogenesis and plasticity. Impairments in this bidirectional communication are implicated in the etiopathogenesis of psychiatric and neurodevelopmental diseases and disorders, including autism spectrum disorders, or comorbidities associated with Gastrointestinal diseases, including inflammatory bowel diseases, where dysbiosis is commonly seen. Consequently, probiotics, or beneficial microbes, are being recognized as promising therapeutic targets to modulate behavior and brain development by modulating the gut microbiota. Here we review the role of microbiota-immune interactions in the gut and the brain during homeostasis and disease and their impact on gut-brain communication, brain function, and behavior as well as the use of probiotics in central nervous system alterations. Statement of novelty: The microbiota-gut-brain axis is increasingly recognized as an important physiological pathway for maintaining health and impacting the brain and central nervous system. Increasing evidence suggests that the immune system is crucial for gut-brain signaling. In this review, we highlight the critical studies in the literature that identify the key immune pathways involved.


Author(s):  
Agnieszka Wnuk ◽  
Małgorzata Kajta

Benzophenone-3 (2-hydroxy-4-methoxybenzophenone, oxybenzone, or BP-3) is one of the most frequently used UV radiation absorbents, which are commonly referred to as sunscreen filters. Its widespread use in industrial applications provides protection against the photodegradation of a wide range of products but at the same time creates the risk of human exposure to benzophenone-3 unbeknownst to the individuals exposed. Topically applied benzophenone-3 penetrates individual skin layers, enters the bloodstream, and is excreted in the urine. In addition, benzophenone-3 easily crosses the placental barrier, which creates the risk of exposure to this substance in the prenatal period. Despite the widespread use and occurrence of benzophenone-3 in the human environment, little knowledge of the mechanisms underlying the effect of benzophenone-3 on the nervous system was available until recently. Only the most recent research, including studies by our group, has enabled the identification of new molecular mechanisms through which benzophenone-3 affects embryonic neuronal cells and the developing mammalian brain. Benzophenone-3 has been shown to induce neurotoxicity and apoptotic processes and inhibit autophagy in embryonic neuronal cells. Benzophenone-3 also alters expression and impairs function of receptors necessary for the proper development and function of the nervous system. The most worrying finding seems to be that benzophenone-3 contributes to an increased risk of developmental abnormalities and/or epigenetically based degeneration of neuronal cells by changing the epigenetic status of neuronal cells.


2011 ◽  
Vol 45 (17) ◽  
pp. 7465-7472 ◽  
Author(s):  
Sunmi Kim ◽  
Kyungho Choi ◽  
Kyunghee Ji ◽  
Jihyeon Seo ◽  
Younglim Kho ◽  
...  

1995 ◽  
Vol 133 (4) ◽  
pp. 390-398 ◽  
Author(s):  
Juan Bernal ◽  
Jacques Nunez

Bernal J, Nunez J. Thyroid hormones and brain development. Eur J Endocrinol 1995;133:390–8. ISSN 0804–4643 Thyroid hormone is a major physiological regulator of mammalian brain development. Cell differentiation, migration and gene expression are altered as a consequence of thyroid hormone deficiency or excess. The physiological role of thyroid hormone can perhaps be defined so as to ensure the timed coordination of different developmental events through specific effects on the rate of cell differentiation and gene expression. All triiodothyronine (T3) receptor isoforms are expressed in the brain and their spatial and temporal patterns of expression suggest unique and complementary functions for the different isoforms. Cell biology studies suggest a role for T3 and its receptors in oligodendroglial and neuronal differentiation and the control of cell death. Some of the effects on neuronal differentiation might be due to an action of thyroid hormone on the production of neurotropins and their receptors. In recent years a number of T3-dependent genes have been identified in the rat brain, such as myelin protein-encoding genes or specific neuronal genes, and thyroid hormone-responsive elements have been demonstrated in some of these genes. The identification of the gene network regulated by thyroid hormone during brain development, the elucidation of the mechanism of regulation and the clarification of the physiological roles of the regulated genes remain major goals for future studies. Jacques Nunez, INSERM U282. Hôpital Henri Mondor, 94010 Créteil, France


Author(s):  
Godwin Sokpor ◽  
Yuanbin Xie ◽  
Huu P. Nguyen ◽  
Tran Tuoc

Dynamic modification of RNA affords proximal regulation of gene expression triggered by non-genomic or environmental changes. One such epitranscriptomic alteration in RNA metabolism is the installation of a methyl group on adenosine [N6-methyladenosine (m6A)] known to be the most prevalent modified state of messenger RNA (mRNA) in the mammalian cell. The methylation machinery responsible for the dynamic deposition and recognition of m6A on mRNA is composed of subunits that play specific roles, including reading, writing, and erasing of m6A marks on mRNA to influence gene expression. As a result, peculiar cellular perturbations have been linked to dysregulation of components of the mRNA methylation machinery or its cofactors. It is increasingly clear that neural tissues/cells, especially in the brain, make the most of m6A modification in maintaining normal morphology and function. Neurons in particular display dynamic distribution of m6A marks during development and in adulthood. Interestingly, such dynamic m6A patterns are responsive to external cues and experience. Specific disturbances in the neural m6A landscape lead to anomalous phenotypes, including aberrant stem/progenitor cell proliferation and differentiation, defective cell fate choices, and abnormal synaptogenesis. Such m6A-linked neural perturbations may singularly or together have implications for syndromic or non-syndromic neurological diseases, given that most RNAs in the brain are enriched with m6A tags. Here, we review the current perspectives on the m6A machinery and function, its role in brain development and possible association with brain disorders, and the prospects of applying the clustered regularly interspaced short palindromic repeats (CRISPR)–dCas13b system to obviate m6A-related neurological anomalies.


2021 ◽  
Vol 9 (4) ◽  
pp. 1010-1012
Author(s):  
Hicham Guennouni Hassani ◽  
◽  
Jallal EL Ouadoudi ◽  
Najib Rachid ◽  
Mahmoud Amine Laffinti ◽  
...  

Thyroid hormones are important for the development, maturation, and function of the central nervous system. While the association between the lack of thyroid hormones in congenital hypothyroidism and profound mental retardation is well documented (Dugbartey 1998), hypothyroidism acquired in adulthood can also manifest itself in a variety of symptoms not only somatic, but also psychiatric especially mood disorders, and anxiety. Psychotic symptoms are rare but are part of this psychic picture. We report the case of a 50-year-old female patient admitted to the psychiatric emergency department for psychomotor agitation of a psychotic appearance, revealing autoimmune hypothyroidism. This observation underlines the need not to underestimate the responsibility of the thyroid hormonal balance in the onset of psychotic manifestations, and to eliminate dysthyroidism before any psychotropic treatment.


Sign in / Sign up

Export Citation Format

Share Document