scholarly journals Influence of Alumina Precursor Properties on Cu-Fe Alumina Supported Catalysts for Total Toluene Oxidation as a Model Volatile Organic Air Pollutant

Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 252
Author(s):  
Tadej Žumbar ◽  
Alenka Ristić ◽  
Goran Dražić ◽  
Hristina Lazarova ◽  
Janez Volavšek ◽  
...  

The structure–property relationship of catalytic supports for the deposition of redox-active transition metals is of great importance for improving the catalytic efficiency and reusability of the catalysts. In this work, the role of alumina support precursors of Cu-Fe/Al2O3 catalysts used for the total oxidation of toluene as a model volatile organic air pollutant is elucidated. Surface characterization of the catalysts revealed that the surface area, pore volume and acid site concentration of the alumina supports are important but not the determining factors for the catalytic activity of the studied catalysts for this type of reaction. The determining factors are the structural order of the support precursor, the homogeneous distribution of the catalytic sites and reducibility, which were elucidated by XRD, NMR, TEM and temperature programed reduction (TPR). Cu–Fe/Al2O3 prepared from bayerite and pseudoboehmite as highly ordered precursors showed better catalytic performance compared to Cu-Fe/Al2O3 derived from the amorphous alumina precursor and dawsonite. Homogeneous distribution of FexOy and CuOx with defined Cu/Fe molar ratio on the Al2O3 support is required for the efficient catalytic performance of the material. The study showed a beneficial effect of low iron concentration introduced into the alumina precursor during the alumina support synthesis procedure, which resulted in a homogeneous metal oxide distribution on the support.

Author(s):  
Buyan-Ulzii Battulga ◽  
Tungalagtamir Bold ◽  
Enkhsaruul Byambajav

AbstractNi based catalysts supported on γ-Al2O3 that was unpromoted (Ni/γAl2O3) or promoted (Ni–Fe/γAl2O3, Ni–Co/γAl2O3, and Ni–Fe–Co/γAl2O3) were prepared using by the impregnation – co-precipitation method. Their catalytic performances for CO methanation were studied at 3 atm with a weight hourly space velocity (WHSV) of 3000 ml/g/h of syngas with a molar ratio of H2/CO = 3 and in the temperature range between 130 and 350 °C. All promoters could improve nickel distribution, and decreased its particle sizes. It was found that the Ni–Co/γAl2O3 catalyst showed the highest catalytic performance for CO methanation in a low temperature range (<250 °C). The temperatures for the 20% CO conversion over Ni–Co/γAl2O3, Ni–Fe/γAl2O3, Ni–Fe–Co/γAl2O3 and Ni/γAl2O3 catalysts were 205, 253, 263 and 270 °C, respectively. The improved catalyst distribution by the addition of cobalt promoter caused the formation of β type nickel species which had an appropriate interacting strength with alumina support in the Ni–Co/γAl2O3. Though an addition of iron promoter improved catalyst distribution, the methane selectivity was lowered due to acceleration of both CO methanation and WGS reaction with the Ni–Fe/γAl2O3. Moreover, it was found that there was no synergetic effect from the binary Fe–Co promotors in the Ni–Fe–Co/γAl2O3 on catalytic activity for CO methanation.


2020 ◽  
Vol 15 (2) ◽  
pp. 490-500
Author(s):  
Neha Neha ◽  
Ram Prasad ◽  
Satya Vir Singh

A series of nickel-cobalt bimetal oxides in varying molar ratios and its single metal oxides were synthesized by reactive calcination of coprecipitated basic-carbonates. Several characterization techniques, such as: Bruneuer Emmett Teller (BET), X-ray Diffraction (XRD), Scanning Electron Microscopy (SEM), Fourier Transform Infra Red (FTIR), and Hydrogen Temperature Programmed Reduction (H2-TPR), were performed over the oxides. Activities of oxides were evaluated in methane total oxidation in the presence or the absence of CO. The best catalytic performance was observed over NiCo catalyst with a Ni/Co molar ratio of 1:1, and the complete conversion of CO-CH4 mixture was achieved at 390 °C. Moreover, the presence of carbon monoxide improves CH4 total oxidation over nickel-cobalt mixed oxides. Structural analysis reveals that the insertion of nickel into the spinel lattice of cobalt oxide causes the structural disorder, which probably caused the increase of the amount of octahedrally coordinated divalent nickel cations that are responsible for catalytic activity. Stability of the best-performed catalyst has been tested in the two conditions, showing remarkable long-term stability and thermal stability, however, showed deactivation after thermally ageing at 700 °C. Copyright © 2020 BCREC Group. All rights reserved 


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 870
Author(s):  
Hadi Dib ◽  
Rebecca El Khawaja ◽  
Guillaume Rochard ◽  
Christophe Poupin ◽  
Stéphane Siffert ◽  
...  

CuAlCe oxides were obtained from hydrotalcite-type precursors by coprecipitation using a M2+/M3+ ratio of 3. The collapse of the layered double hydroxide structure following the thermal treatment leads to the formation of mixed oxides (CuO and CeO2). The catalytic performance of the copper-based catalysts was evaluated in the total oxidation of two Volatile Organic Compounds (VOCs): ethanol and toluene. XRD, SEM Energy-Dispersive X-ray Spectrometry (EDX), H2-temperature programmed reduction (TPR) and XPS were used to characterize the physicochemical properties of the catalysts. A beneficial effect of combining cerium with CuAl-O oxides in terms of redox properties and the abatement of the mentioned VOCs was demonstrated. The sample with the highest content of Ce showed the best catalytic properties, which were mainly related to the improvement of the reducibility of the copper species and their good dispersion on the surface. The presence of a synergetic effect between the copper and cerium elements was also highlighted.


Catalysts ◽  
2019 ◽  
Vol 9 (3) ◽  
pp. 226 ◽  
Author(s):  
Zakaria Sihaib ◽  
Fabrizio Puleo ◽  
Giuseppe Pantaleo ◽  
Valeria La Parola ◽  
José Luis Valverde ◽  
...  

LaMnO3 (LM) catalysts with a molar ratio of citric acid (CA) to metal (La3+ + Mn2+) nitrates ranging from 0.5 to 2 (LM0.5 to LM2) were synthesized by the citrate sol–gel method with the aim of studying the effect of the citric acid ratio on the physicochemical properties and the catalytic performance in hydrocarbon oxidation. Structural and morphological properties of these catalysts were characterized by X-ray diffraction (XRD) and specific surface area (N2 adsorption) measurements, while the chemical composition was determined by inductively coupled plasma atomic emission spectroscopy (ICP-OES). In the selected samples, additional characterizations were carried out by thermogravimetric and differential thermal analysis (TGA/DTA), Fourier Transform Infrared Spectroscopy (FT-IR), temperature-programmed reduction by hydrogen (H2-TPR), and X-ray photoelectron spectroscopy (XPS). The results showed that the amount of citric acid used significantly influenced the TGA/DTA profile of gels along with the physicochemical properties of the catalysts. The XRD patterns are consistent with the perovskite formation as the main phase. The segregation of a small amount of Mn3O4, detected for molar ratios ranging between 0.5 and 1.5, suggested the formation of a slightly nonstoichiometric LaMn1−xO3 phase with a relatively high content of Mn4+. The catalytic performance was evaluated in the total oxidation of two selected hydrocarbons, toluene and propene, which represent typical volatile organic compounds (VOCs). Typically, three consecutive catalytic cycles were performed in order to reach steady-state performance in toluene and propene oxidation. Moreover, the stability of the catalysts under reaction conditions was investigated through 24-h experiments at 17% of toluene conversion. The catalysts LM1.2, LM1.3, and LM1.5 showed the best catalytic performance in both hydrocarbon oxidations, well comparing with the Pd/Al2O3 used as a reference.


Catalysts ◽  
2020 ◽  
Vol 10 (8) ◽  
pp. 900
Author(s):  
Imane Driouch ◽  
Weidong Zhang ◽  
Michèle Heitz ◽  
Jose Luis Valverde ◽  
Anne Giroir-Fendler

A series of Co3O4 catalysts were synthesized by an ammonia precipitation method at various precipitating pH values (8.0, 8.5, 9.0, 9.5, and 10.0) and with different numbers of washings. Their performance in the total oxidation of two selected hydrocarbons, toluene and propane, was evaluated at a reactant/oxygen molar ratio of 1/210 and a Weight Hourly Space Velocity (WHSV) of 40,000 mL g−1 h−1. The physicochemical properties of the catalysts were characterized by thermogravimetric and differential thermal analysis (TG/DTA), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD) and N2 absorption–desorption. The results show that the catalysts are in the cubic spinel phase (Fd-3m (227), a = 8.0840 Å) with average crystalline sizes of 29−40 nm and specific surface areas of 12–20 m2 g−1. All catalysts allowed 100% conversion of both toluene and propane at temperatures below 350 °C. The precipitating pH and the number of washings were observed to significantly affect the catalytic performance. The optimal synthesis condition was established to be pH 8.5 with two washings. The best catalyst gave 100% conversion of toluene and propane at 306 °C and 268 °C, respectively.


Catalysts ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 765 ◽  
Author(s):  
Marianna Bellardita ◽  
Roberto Fiorenza ◽  
Luisa D'Urso ◽  
Luca Spitaleri ◽  
Antonino Gulino ◽  
...  

The thermocatalytic, photocatalytic and photothermo-catalytic oxidation of some volatile organic compounds (VOCs), 2-propanol, ethanol and toluene, was investigated over brookite TiO2-CeO2 composites. The multi-catalytic approach based on the synergistic effect between solar photocatalysis and thermocatalysis led to the considerable decrease in the conversion temperatures of the organic compounds. In particular, in the photothermo-catalytic runs, for the most active samples (TiO2-3 wt% CeO2 and TiO2-5 wt% CeO2), the temperature at which 90% of VOC conversion occurred was about 60 °C, 40 °C and 20 °C lower than in the thermocatalytic tests for 2-propanol, ethanol and toluene, respectively. Furthermore, the addition of cerium oxide to brookite TiO2 favored the total oxidation to CO2 already in the photocatalytic tests at room temperature. The presence of small amounts of cerium oxide allowed to obtain efficient brookite-based composites facilitating the space charge separation and increasing the lifetime of the photogenerated holes and electrons as confirmed by the characterization measurements. The possibility to concurrently utilize the photocatalytic properties of brookite and the redox properties of CeO2, both activated in the photothermal tests, is an attractive approach easily applicable to purify air from VOCs.


Catalysts ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 661
Author(s):  
Roberto Fiorenza

In recent years, the impending necessity to improve the quality of outdoor and indoor air has produced a constant increase of investigations in the methodologies to remove and/or to decrease the emission of volatile organic compounds (VOCs). Among the various strategies for VOC elimination, catalytic oxidation and recently photocatalytic oxidation are regarded as some of the most promising technologies for VOC total oxidation from urban and industrial waste streams. This work is focused on bimetallic supported catalysts, investigating systematically the progress and developments in the design of these materials. In particular, we highlight their advantages compared to those of their monometallic counterparts in terms of catalytic performance and physicochemical properties (catalytic stability and reusability). The formation of a synergistic effect between the two metals is the key feature of these particular catalysts. This review examines the state-of-the-art of a peculiar sector (the bimetallic systems) belonging to a wide area (i.e., the several catalysts used for VOC removal) with the aim to contribute to further increase the knowledge of the catalytic materials for VOC removal, stressing the promising potential applications of the bimetallic catalysts in the air purification.


2021 ◽  
Vol 546 ◽  
pp. 149148
Author(s):  
Anna Rokicińska ◽  
Patrycja Majerska ◽  
Marek Drozdek ◽  
Sebastian Jarczewski ◽  
Laetitia Valentin ◽  
...  

Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 555
Author(s):  
Yaxin Dong ◽  
Chenguang Su ◽  
Kai Liu ◽  
Haomeng Wang ◽  
Zheng Zheng ◽  
...  

A series of FeOx-MnO2-CeO2 catalysts were synthesized by the surfactant-templated coprecipitation method and applied for HCHO removal. The influence of Fe/Mn/Ce molar ratio on the catalytic performance was investigated, and the FeOx-MnO2-CeO2 catalyst exhibited excellent catalytic activity, with complete HCHO conversion at low temperatures (40 °C) when the molar ratio of Fe/Mn/Ce was 2/5/5. The catalysts were characterized by N2 adsorption and desorption, XRD, H2-TPR, O2-TPD and XPS techniques to illustrate their structure–activity relationships. The result revealed that the introduction of FeOx into MnO2-CeO2 formed a strong interaction between FeOx-MnO2-CeO2, which facilitated the improved dispersion of MnO2-CeO2, subsequently increasing the surface area and aiding pore development. This promotion effect of Fe enhanced the reducibility and produced abundant surface-active oxygen. In addition, a great number of Oα is beneficial to the intermediate decomposition, whereas the existence of Ce3+ favors the formation of oxygen vacancies on the surface of the catalyst, all of which contributed to HCHO oxidation at low temperatures.


Sign in / Sign up

Export Citation Format

Share Document