scholarly journals Integrated Cleaner Biocatalytic Process for Biodiesel Production from Crude Palm Oil Comparing to Refined Palm Oil

Catalysts ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 734
Author(s):  
Papasanee Muanruksa ◽  
Phavit Wongsirichot ◽  
James Winterburn ◽  
Pakawadee Kaewkannetra

An integrated cleaner biocatalyst process was performed for biodiesel production from crude palm oil (CPO) and refined palm oil (RPO). It was evaluated on process efficiency in terms of high purity of biodiesel as well as by-products without purification, less wastewater, less time consuming, and a simple downstream process. A first saponification step was carried out in both f CPO and RPO, a high purity of glycerol (86.25% and 87.5%) was achieved, respectively, while free fatty acids (FFASs) in soap were obtained after hexane extraction. High yields of FFASs were obtained from both CPO and RPO (98.83% and 90.94%). Subsequently, the FFAs were esterified to biodiesel by a biocatalyst of immobilized lipase. The highest biodiesel yields achieved were of 92.14% and 92.58% (CPO and RPO). Remarkably, biodiesel yields obtained from CPO and RPO achieved satisfactory values and the biocatalyst used could be reused for more than 16–17 cycles.

2013 ◽  
Vol 834-836 ◽  
pp. 550-554 ◽  
Author(s):  
Warakom Suwanthai ◽  
Vittaya Punsuvon ◽  
Pilanee Vaithanomsat

In this research, calcium methoxide was synthesized as solid base catalyst from quick lime for biodiesel production. The catalyst was further characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection fourier transform (ATR-FTIR) and Energy-dispersive X-ray spectroscopies (EDX) to evaluate its performance. The transesterification of refined palm oil using calcium methoxide and the process parameters affecting the fatty acid methyl ester (FAME) content such as catalyst concentration, methanol:oil molar ratio and reaction time were investigated. The results showed that the FAME content at 97% was achieved within 3 h using 3 %wt catalyst loading, 12:1 methanol:oil molar ratio and 65 °C reaction temperature. The result of FAME suggested calcium methoxide was the promising solid catalyst for substitution of the conventional liquid catalyst.


1999 ◽  
Vol 69 (5) ◽  
pp. 330-336 ◽  
Author(s):  
Niyongabo ◽  
Youyou ◽  
Léger ◽  
Descomps ◽  
Ammouche ◽  
...  

The aim was first to examine the differential effects of crude and refined palm oil (CPO and RPO) on the lipid and lipoprotein constants of plasma in rats and to compare the effect of crude palm oil to that of fish oil. Secondarily, it was to know whether one can take advantage from the association of CPO with FO. Twenty-four-day-old weaning rats were divided into five experimental groups, each receiving a purified diet containing 10% oil as either a single oil or an equal amount of two oils. After a feeding period of 36 days, the main results were as follows. As compared to the rats fed the RPO diet, those fed the CPO diet had lower total cholesterol, LDL-C, VLDL-C and apoB and higher HDL-C/LDL-C and apoA1/apoB ratios. Those fed the FO diet had only lower VLDL-C and triglycerides and higher HDL-C and HDL-C/LDL-C ratio. Whereas FO associated with RPO in the same diet had the same effect as FO alone, FO associated with CPO tends to reinforce the effect of CPO. This is particularly true for the effects on apoB and apoA1 which were found to be synergistically depressed and enhanced, respectively. Given the role played by these biological constants as predictors of CVD in humans, and in spite of the fact that these predictors are not relevant in rats, these results would suggest the potential interest of CPO or the association of CPO with FO in human nutrition.


2013 ◽  
Vol 92 ◽  
pp. 81-88 ◽  
Author(s):  
Adeeb Hayyan ◽  
Mohd Ali Hashim ◽  
Farouq S. Mjalli ◽  
Maan Hayyan ◽  
Inas M. AlNashef

2014 ◽  
Vol 917 ◽  
pp. 87-95 ◽  
Author(s):  
Suliana Abu Bakar ◽  
Suzana Yusup ◽  
Murni Melati Ahmad ◽  
Armando T. Quitain ◽  
Mitsuru Sasaki ◽  
...  

The production of biodiesel from crude palm oil (CPO) using microwave technique is investigated and has been compared with conventional heating. Two-step biodiesel production process is applied to maximize the highest biodiesel yield in short reaction time using microwave method. Sulfuric acid (H2SO4) as acid catalysts is used in pre-treatment of feedstock by esterification process followed by potassium hydroxide (KOH) as base catalyst for transesterification process with low methanol to oil ratio. The main purpose of the pre-treatment process is to reduce the free fatty acids (FFA) content of CPO from higher value of FFA content (>6.8%) to a minimum level for biodiesel production (<1%). Esterification and transesterification is carried out in fully instrumented and controlled microwave reactor system to get higher yield in shorter time. This two-step esterification and transesterification process showed that the maximum conversion of palm biodiesel obtained is 95.1% with the process conditions of methanol-to-oil molar ratio of 6:1, reaction temperature 65oC, reaction time 15min, and 2% (wt/wt) KOH amount using microwave method compared to conventional heating where the palm oil methyl ester (POME) yield obtained is 81% at the same conditions. The result showed that, the biodiesel production using microwave technique proved to be a fast and easy route to get high yields of biodiesel.


2016 ◽  
Vol 79 (1) ◽  
Author(s):  
. TRI-PANJI ◽  
. SUHARYANTO ◽  
Urip PERWITASAR

AbstractVegetable oil enriched with diacylglycerol (DAG) isknown as healthy oil. This oil is much more expensive thancooking oil. Production of DAG could be performed byglycerolysis process of CPO using specific lipase of 1,3-glyceride from Rhizopus oryzae mold. Product derived fromglycerolysis process of CPO is a mixture of DAG, mono-acylglycerol (MAG), free fatty acid (FFA) and residual ofunglycerolysed triacylglyserol (TAG). Therefore the DAGproduct has to be isolated from other components in order toget high purity of DAG. The objective of the research was topurify and to find out optimal concentration of DAG derivedfrom a mixture product of CPO glycerolysis at laboratoryscale experiment (total reactant for glycerolysis was93.8 mL) and semipilot scale experiment (10 times oflaboratory scale) using column chromatography with silicagel as stationary phase. The research showed that thehighest DAG content could be collected at fraction of 26 th i.e65%, while at semipilot scale experiment the highest contentof DAG (97%) was achieved at 64 to 66th fraction.Reglycerolysis of residual CPO only yielded 8.24%glycerolysis product which was much lower than that of thefirst glycerolysis reaching 46.67%. The highest DAG derivedfrom the second reglycerolysis product was achieved at 24 thfraction reaching 35.71 % .AbstrakMinyak nabati kaya kandungan diasilgliserol (DAG)dikenal sebagai minyak sehat (healthy oil). Minyak ini jauhlebih mahal dari minyak makan biasa. Produksi DAG dapatdilakukan dengan proses gliserolisis CPO menggunakanenzim lipase spesifik 1,3-gliserida dari kapang Rhizopusoryzae. Produk gliserolisis CPO triasilgliserol adalahcampuran DAG, monoasilgliserol (MAG) dan asam lemakbebas (ALB) serta residu triasilgliserol (TAG) yang tidaktergliserolisis. Oleh karena itu DAG yang terbentuk harusdipisahkan dari komponen lainnya agar diperoleh fraksi DAGdengan kemurnian tinggi. Penelitian ini bertujuan untukmemurnikan dan menetapkan konsentrasi DAG yang dapatdiperoleh dari gliserolisis CPO skala lab (total reaktan93,8 mL) dan skala semipilot (10 kali skala laboratorium)dengan kromatografi kolom menggunakan fase padat silikagel. Residu TAG dari gliserolisis pertama digunakan untukgliserolisis kedua atau gliserolisis ulang. Hasil penelitianmenunjukkan bahwa fraksi DAG dengan konsentrasitertinggi diperoleh pada fraksi ke-26 yaitu sebesar 65%,sedangkan pada percobaan dengan skala semipilot (10 kaliskala laboratorium) diketahui bahwa konsentrasi DAGtertinggi (97%) diperoleh pada fraksi ke-64 sampai denganke-66. Gliserolisis kedua dari residu CPO hanya mampumenghidrolisis TAG menjadi campuran DAG, MAG danALB sekitar 8,24%, lebih kecil dari reaksi gliserolisispertama yaitu sebesar 46,67%. DAG tertinggi yang berhasildikumpulkan dari produk gliserolisis kedua adalah padafraksi ke-24 yaitu sebesar 35,71% .


2019 ◽  
Vol 3 (4) ◽  
pp. 340
Author(s):  
Adi Fitra Andikos ◽  
Helly Andri

 The role of oil and gas business in Indonesia has always influenced the source of revenue from the country and energy sources for the national economy. In the 1970 's to the 1990 's and mid-1990 's, it was characterized by the high dependence of the national economy on oil and gas revenues, triggering massive oil and gas-producing. Currently, Indonesia is the largest palm oil producer and exporter in the world. Palm oil is one of the roads to overcome the problem of petroleum in Indonesia. To commercialize plants is still constrained because the availability of low raw material costs very hard to get. The amalgamation of crude palm oil and crude palm sludge is one of the problems of raw materials for renewable energy production. This low-level oil has great potential as a raw material for biodiesel production. To get the maximum quality mixing required a computer method. The method used in this study is analysis study with the Association classification approach by testing Improved Apriori algorithm in mining palm oil dataset. In this research using Data Mining application so that can be used to display the information of quality improvement of palm oil acid with high quality as a biodiesel base where the information is seen from the value of support and Confidence between items. M-Apriori algorithm can not read the continous data, so it must be done transformation first, one of them using the help of discreetization technique. Crude palm oil acid type esteridication which is fatty acid levels > 60 and Abu bunches 51-100 g/mol then the quality of biodiesel with the result of rising methyl Ester increases by as much as 100% (confidence: 1). From data that is calculated manually, no relationship is found Association.


2009 ◽  
Vol 9 (17) ◽  
pp. 3166-3170 ◽  
Author(s):  
A.N. Alkabbashi ◽  
Md Z. Alam ◽  
M.E.S. Mirghani ◽  
A.M.A. Al-Fusaiel

2016 ◽  
Vol 26 (5) ◽  
pp. 3-10 ◽  
Author(s):  
María del Consuelo Ortiz Tapia ◽  
Pedro García Alamilla ◽  
Laura Mercedes Lagunes Gálvez ◽  
María Isabel Arregoitia Quezada ◽  
Ricardo García Alamilla ◽  
...  

2014 ◽  
Vol 931-932 ◽  
pp. 1038-1042 ◽  
Author(s):  
Suhdee Niseng ◽  
Krit Somnuk ◽  
Gumpon Prateepchaikul

In this work, response surface methodology (RSM), with 5-level and 2-factor central composite design (CCD) was used to optimize the condition of base-catalyzed transesterification from refined palm oil. The two main parameters; methanol concentration and potassium hydroxide concentration, were varied to investigate the effect on the methyl ester purity. The result indicated that the KOH concentration was the most significant to produce methyl ester (the lowest p-values occurs in all response models). From excel solver, full quadratic model was obtained for predicting the response surface models. The suitable condition: 23.81 vol.% methanol and 11.80 wt.% KOH under temperature of 60°C and reaction time of 60 min, is the optimum condition.


Sign in / Sign up

Export Citation Format

Share Document