scholarly journals Rational Design and Synthesis of ZnWO4 Nanorods Decorated with SnS Nanodots with Enhanced Visible-Light Photocatalytic Performance

Catalysts ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1345
Author(s):  
Xiaoyi Shan ◽  
Tiekun Jia ◽  
Fang Fu

Aiming to construct a direct Z-scheme binary heterostructure for efficient degradation of the organic dye Rhodamine B (RhB), ZnWO4 nanorods decorated with SnS nanodots were rationally designed and prepared via a facile two-step route. Morphological observation and structural study showed that ultra-fine SnS nanodots were anchored on the surface of ZnWO4 nanorods to form an intimate contact between the two components. Such a special structure provided SnS/ZnWO4 nanocomposites with significantly enhanced light harvesting capacity, revealed by the results of UV-vis diffuse reflection spectroscopy (DRS). Photoluminescence (PL) analysis in combination with electrochemical measurements demonstrated that the recombination of photoactivated charge carriers was efficiently inhibited and the transfer of photoactivated charge carriers was successfully achieved due to the introduction of SnS. The degradation rate over SnS/ZnWO4 nanocomposites reached a maximum value at SnS content of 9 wt%. The significantly enhanced photoactivity of SnS/ZnWO4 nanocomposites was imputed to the synergistic effect of the promoted light absorption ability and effective photogenerated charge carriers’ transfer and separation.

2015 ◽  
Vol 87 (17) ◽  
pp. 8740-8747 ◽  
Author(s):  
Stephanie A. DeJong ◽  
Zhenyu Lu ◽  
Brianna M. Cassidy ◽  
Wayne L. O’Brien ◽  
Stephen L. Morgan ◽  
...  

2018 ◽  
Vol 238 ◽  
pp. 03007
Author(s):  
Xiquan Wang ◽  
Nan Zhang ◽  
Gao Wang

Bi2S3-sensitized BiFO3 (BFO) photocatalyst (Bi2S3/BFO) was successfully synthesized through a facile and environmental ion exchange method between BFO and Thiosurea (H2NCSNH2, TU). The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and UV-vis diffuse reflection spectroscopy (DRS). The obtained Bi2S3/BFO composites showed excellent photocatalytic performance for decomposing Rhodamine B (RhB) compared with pure BFO under visible light irradiation (λ>400nm). 5% Bi2S3/BFO exhibited the highest photocatalytic activity and excessive amount of Bi2S3 would result in the decrease of photocatalytic activity of BFO. The mechanism of enhanced photocatalytic activity was proposed on the basis of the calculated energy band positions.


Catalysts ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 123 ◽  
Author(s):  
Andrea Bellmann ◽  
Christine Rautenberg ◽  
Ursula Bentrup ◽  
Angelika Brückner

UV–Vis spectroscopy as well as in situ FTIR spectroscopy of pyridine and CO adsorption were applied to determine the nature of Co species in microporous, mesoporous, and mixed oxide materials like Co–ZSM-5, Co/Na–ZSM-5, Co/Al–SBA-15, and Co/Al2O3–SiO2. Because all sample types show comparable UV–Vis spectra with a characteristic band triplet, the former described UV–Vis band deconvolution method for determination and quantification of individual cationic sites in the zeolite appears doubtful. This is also confirmed by results of pyridine and CO adsorption revealing that all Co–zeolite samples contain two types of Co2+ species located at exchange positions as well as in oxide-like clusters independent of the Co content, while in Co/Al–SBA-15 and Co/Al2O3–SiO2 only Co2+ species in oxide-like clusters occur. Consequently, the measured UV–Vis spectra represent not exclusively isolated Co2+ species, and the characteristic triplet band is not only related to γ-, β-, and α-type Co2+ sites in the zeolite but also to those dispersed on the surface of different oxide supports. The study demonstrates that for proper characterization of the formed Co species, the use of complementary methods is required.


Sign in / Sign up

Export Citation Format

Share Document