scholarly journals Recent Advances in Homogeneous/Heterogeneous Catalytic Hydrogenation and Dehydrogenation for Potential Liquid Organic Hydrogen Carrier (LOHC) Systems

Catalysts ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1497
Author(s):  
Jun-Young Cho ◽  
Hahyeon Kim ◽  
Jeong-Eun Oh ◽  
Boyoung Y. Park

Here, we review liquid organic hydrogen carriers (LOHCs) as a potential solution to the global warming problem due to the increased use of fossil fuels. Recently, hydrogen molecules have attracted attention as a sustainable energy carrier from renewable energy-rich regions to energy-deficient regions. The LOHC system is one a particularly promising hydrogen storage system in the “hydrogen economy”, and efficient hydrogen mass production that generates only benign byproducts can be applied in the industry. Therefore, this article presents hydrogenation and dehydrogenation, using homogeneous or heterogeneous catalysts, for several types of LOHCs, including formic acid/formaldehyde/ammonia, homocyclic compounds, nitrogen- and oxygen-containing compounds. In addition, it introduces LOHC system reactor types.

Author(s):  
Giovanni Cerri ◽  
Claudio Corgnale ◽  
Coriolano Salvini

Many significant features lead to consider hydrogen as an interesting energy carrier. Hydrogen can be burned with pure oxygen thus the production of CO2 and NOx is avoided. Since molecular hydrogen does not exist on the earth it has to be produced from fossil fuels or from renewable energy sources. Energy from fossil fuels can be transferred into hydrogen and released elsewhere. So relevant reduction of emission of pollutant can be achieved in critical zones at the centres of large cities. Nevertheless the losses occurring during production, distribution and storage of hydrogen lead to an increased consumption of the primary energy source (fossil fuels) and to increased emission levels (CO2 and others). Hydrogen can be obtained from renewable sources such as the solar energy and used in situ for power generation. In this case hydrogen can act as an energy carrier which allows a local energy storage. In such a way the time dependent availability of the solar energy and the production level of the power plant can be decoupled. In a distributed generation context a small size solar power plant equipped with a hydrogen storage system has been studied. Different storage options have been investigated and compared. Finally a liquid hydrogen storage system is proposed. The peculiarities of the selected system allow a reduction of losses, size of machinery and energy requirements. The paper presents an analysis of the more relevant issues related to the different hydrogen storage options suitable for the present application. After the characterization of the solar field in terms of energy availability and the specifications of both the hydrogen production system and the power generation unit, the design of a liquid hydrogen storage system is presented and widely discussed. This method is particularly useful in the plants management (for example nuclear or coal plants), where it’s impossible or very difficult to modify power level, as well. So, such a static system would be useful in order to allow power modulation by H2 plant. In order to do this, a research for individuating high volumic (and mass) specific capacity systems should be driven.


Micromachines ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1190
Author(s):  
Zhaojie Wu ◽  
Jianhua Fang ◽  
Na Liu ◽  
Jiang Wu ◽  
Linglan Kong

MgH2 has become a hot spot in the research of hydrogen storage materials, due to its high theoretical hydrogen storage capacity. However, the poor kinetics and thermodynamic properties of hydrogen absorption and desorption seriously hinder the development of this material. Ti-based materials can lead to good effects in terms of reducing the temperature of MgH2 in hydrogen absorption and desorption. MXene is a novel two-dimensional transition metal carbide or carbonitride similar in structure to graphene. Ti3C2 is one of the earliest and most widely used MXenes. Single-layer Ti3C2 can only exist in solution; in comparison, multilayer Ti3C2 (ML-Ti3C2) also exists as a solid powder. Thus, ML-Ti3C2 can be easily composited with MgH2. The MgH2+ML-Ti3C2 composite hydrogen storage system was successfully synthesized by ball milling. The experimental results show that the initial desorption temperature of MgH2-6 wt.% ML-Ti3C2 is reduced to 142 °C with a capacity of 6.56 wt.%. The Ea of hydrogen desorption in the MgH2-6 wt.% ML-Ti3C2 hydrogen storage system is approximately 99 kJ/mol, which is 35.3% lower than that of pristine MgH2. The enhancement of kinetics in hydrogen absorption and desorption by ML-Ti3C2 can be attributed to two synergistic effects: one is that Ti facilitates the easier dissociation or recombination of hydrogen molecules, while the other is that electron transfer generated by multivalent Ti promotes the easier conversion of hydrogen. These findings help to guide the hydrogen storage properties of metal hydrides doped with MXene.


2005 ◽  
Vol 895 ◽  
Author(s):  
Anne C. Dillon ◽  
Brent P. Nelson ◽  
Yufeng Zhao ◽  
Yong-Hyun Kim ◽  
C. Edwin Tracy ◽  
...  

AbstractThe majority of the world energy consumption is derived from fossil fuels. Furthermore, the United States (US) consumption of petroleum vastly exceeds its production, with the majority of petroleum being consumed in the transportation sector. The increasing dependency on foreign fuel resources in conjunction with the severe environmental impacts of a petroleum-based society dictates that alternative renewable energy resources be developed. The US Department of Energy's (DOE's) Office of Energy Efficiency and Renewable Energy and the Office of Basic Energy Sciences are currently promoting a vehicular hydrogen-based energy economy. However, none of the current on-board storage technologies are suitable for practical and safe deployment. Significant scientific advancement is therefore still required if a viable on-board storage technology is to be developed. A detailed discussion of the benefits of transitioning to a hydrogen-powered automotive fleet as well as the tremendous technical hurdles faced for the development of an on-board hydrogen storage system are provided here. A novel class of theoretically predicted nanostructured materials that could revolutionize hydrogen storage materials is also presented.


2020 ◽  
pp. 1-18
Author(s):  
Yu.V. Bilokopytov ◽  
◽  
S.L. Melnykova ◽  
N.Yu. Khimach ◽  
◽  
...  

CO2 is a harmful greenhouse gas, a product of chemical emissions, the combustion of fossil fuels and car exhausts, and it is a widely available source of carbon. The review considers various ways of hydrogenation of carbon dioxide into components of motor fuels - methanol, dimethyl ether, ethanol, hydrocarbons - in the presence of heterogeneous catalysts. At each route of conversion of CO2 (into oxygenates or hydrocarbons) the first stage is the formation of CO by the reverse water gas shift (rWGS) reaction, which must be taken into account when catalysts of process are choosing. The influence of chemical nature, specific surface area, particle size and interaction between catalyst components, as well as the method of its production on the CO2 conversion processes is analyzed. It is noted that the main active components of CO2 conversion into methanol are copper atoms and ions which interact with the oxide components of the catalyst. There is a positive effect of other metals oxides additives with strong basic centers on the surface on the activity of the traditional copper-zinc-aluminum oxide catalyst for the synthesis of methanol from the synthesis gas. The most active catalysts for the synthesis of DME from CO2 and H2 are bifunctional. These catalysts contain both a methanol synthesis catalyst and a dehydrating component, such as mesoporous zeolites with acid centers of weak and medium strength, evenly distributed on the surface. The synthesis of gasoline hydrocarbons (≥ C5) is carried out through the formation of CO or CH3OH and DME as intermediates on multifunctional catalysts, which also contain zeolites. Hydrogenation of CO2 into ethanol can be considered as an alternative to the synthesis of ethanol through the hydration of ethylene. High activation energy of carbon dioxide, harsh synthesis conditions as well as high selectivity for hydrocarbons, in particular methane remains the main problems. Further increase of selectivity and efficiency of carbon dioxide hydrogenation processes involves the use of nanocatalysts taking into account the mechanism of CO2 conversion reactions, development of methods for removing excess water as a by-product from the reaction zone and increasing catalyst stability over time.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 549
Author(s):  
Eric Pareis ◽  
Eric Hittinger

With an increase in renewable energy generation in the United States, there is a growing need for more frequency regulation to ensure the stability of the electric grid. Fast ramping natural gas plants are often used for frequency regulation, but this creates emissions associated with the burning of fossil fuels. Energy storage systems (ESSs), such as batteries and flywheels, provide an alternative frequency regulation service. However, the efficiency losses of charging and discharging a storage system cause additional electrical generation requirements and associated emissions. There is not a good understanding of these indirect emissions from charging and discharging ESSs in the literature, with most sources stating that ESSs for frequency regulation have lower emissions, without quantification of these emissions. We created a model to estimate three types of emissions (CO2, NOX, and SO2) from ESSs providing frequency regulation, and compare them to emissions from a natural gas plant providing the same service. When the natural gas plant is credited for the generated electricity, storage systems have 33% to 68% lower CO2 emissions than the gas turbine, depending on the US eGRID subregion, but higher NOX and SO2 emissions. However, different plausible assumptions about the framing of the analysis can make ESSs a worse choice so the true difference depends on the nature of the substitution between storage and natural gas generation.


Author(s):  
Rakesh Parida ◽  
Mrinal Kanti Dash ◽  
Santanab Giri ◽  
Gourisankar Roymahapatra

2016 ◽  
Vol 680 ◽  
pp. 529-533
Author(s):  
Jian Li Ma ◽  
Hai Yan Cao ◽  
Xiao Xia Zhang ◽  
Dong Chen

Ammonia borane (NH3BH3, AB) is an excellent source of hydrogen(19.6 wt %) for fuel cell applications. In this paper, pure ammonia borane is successfully prepared by using amino complex for ammonia complex Ag(NH3)2Cl as new ammonia source, and sodium borohydride (NaBH4) as boron source. The composition and constitution of the products are measured by XRD and FT-IR. The thermolysis of ammonia borane is significant for its practical application. Boric acid plays a role in improving ammonia borane hydrogen performance. The effects of different mass ratio of boric acid and ammonia borane on dehydrogenation are tested by XRD, TG/DTA and TPD-MS. The results show that boric acid can decrease the first level dehydrogenation temperature of ammonia borane decrease to about 85°C (working temperature of PEMFC). What’s more, the onset temperature of AB’s thermolysis can decrease to about 60°C when the mass ratio of ammonia borane and boric acid is equal to 3:1. This makes ammonia borane be more suitable for the application in on-board hydrogen storage system.


ChemSusChem ◽  
2020 ◽  
Author(s):  
Matthias S. Frei ◽  
Cecilia Mondelli ◽  
Marion I. M. Short ◽  
Javier Pérez‐Ramírez

Sign in / Sign up

Export Citation Format

Share Document