scholarly journals A Novel Megakaryocyte Subpopulation Poised to Exert the Function of HSC Niche as Possible Driver of Myelofibrosis

Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3302
Author(s):  
Anna Rita Migliaccio

Careful morphological investigations, coupled with experimental hematology studies in animal models and in in vitro human cultures, have identified that platelets are released in the circulation by mature megakaryocytes generated by hematopoietic stem cells by giving rise to lineage-restricted progenitor cells and then to morphologically recognizable megakaryocyte precursors, which undergo a process of terminal maturation. Advances in single cell profilings are revolutionizing the process of megakaryocytopoiesis as we have known it up to now. They identify that, in addition to megakaryocytes responsible for producing platelets, hematopoietic stem cells may generate megakaryocytes, which exert either immune functions in the lung or niche functions in organs that undergo tissue repair. Furthermore, it has been discovered that, in addition to hematopoietic stem cells, during ontogeny, and possibly in adult life, megakaryocytes may be generated by a subclass of specialized endothelial precursors. These concepts shed new light on the etiology of myelofibrosis, the most severe of the Philadelphia negative myeloproliferative neoplasms, and possibly other disorders. This perspective will summarize these novel concepts in thrombopoiesis and discuss how they provide a framework to reconciliate some of the puzzling data published so far on the etiology of myelofibrosis and their implications for the therapy of this disease.

Blood ◽  
2020 ◽  
Vol 136 (Supplement 1) ◽  
pp. 7-8
Author(s):  
Tessa Dignum ◽  
Barbara Varnum-Finney ◽  
Sanjay Srivatsan ◽  
Stacey Dozono ◽  
Olivia Waltner ◽  
...  

During embryonic development, blood cells emerge from hemogenic endothelium (HE), producing waves of hematopoietic progenitors prior to the emergence of rare hematopoietic stem cells (HSCs), which have the unique ability to self-renew and generate all cell types of the adult hematopoietic system. HSCs have significant potential for use in cellular therapies and disease modeling. However, efforts to generate HSCs in vitro from pluripotent stem cells (PSCs) have been limited by an incomplete understanding of the unique phenotypic markers and transcriptional programs that distinguish HE with HSC potential. Previous studies have demonstrated that yolk sac-derived erythromyeloid progenitors and HSCs originate from distinct populations of HE. However, it is not known whether the earliest lymphoid-competent progenitors, multipotent progenitors, and HSCs originate from HE with common phenotypic and transcriptional properties. To investigate this, we combined index sorting of single hemogenic precursors with stromal co-culture that enables simultaneous detection of HSC and multilineage hematopoietic potential, to functionally validate surface markers that may distinguish hemogenic precursors with different hematopoietic fates. We previously found that the co-expression of two markers, CD61 and EPCR, identifies a subset of VE-Cadherin+ endothelial cells from the mouse P-Sp/AGM region (para-aortic splanchnopleura/aorta-gonad-mesonephros, where the first HSCs are generated from HE between E9 and E11 in development) enriched phenotypically for arterial endothelial surface markers (e.g. Dll4, CD44) and functionally for hemogenic precursors with HSC potential. However, this population remains heterogeneous, containing clonal hemogenic precursors with the potential for HSC as well as multilineage progenitor-restricted fates. Here, we report that expression of arterial marker CXCR4 further enriched for functional HSC potential in hemogenic precursors in the P-Sp/AGM between E9 and E10, when the first clonal HSC precursors are detected at rare frequency. In contrast, we detected more abundant clonal HE with multilineage hematopoietic potential (producing lymphoid, erythroid, and myeloid progeny in vitro but lacking HSC potential) at the same stage, which are distinguished by comparatively lower CXCR4 expression. To investigate transcriptional differences between HE populations differentially expressing CXCR4, we performed single-cell RNA sequencing of E9 P-Sp-derived VE-Cadherin+CD61+EPCR+ cells. Using an unbiased gene module analysis based on graph autocorrelation in the Monocle 3 platform to identify genes that co-vary over pseudotime, we found that Cxcr4 is uniquely expressed in a subset of cells simultaneously enriched for arterial-specific genes (including Dll4, Efnb2, Hey2, Sox17, Cd44) and genes with established roles in HSC maintenance and self-renewal (including Mecom, Cdkn1c, H19, Txnip, Kmt2a). Conversely, expression of these genes is decreased in cells undergoing the endothelial to hematopoietic transition at this stage based on pseudotemporal ordering, concomitant with increasing expression of hematopoietic-specifying transcription factors Runx1 and Gfi1, and other genes associated with definitive hematopoiesis (egs. Myb, Kit, Hlf, Gata2, Mpl, Lyl1). We also examined the aggregate expression of established HSC-specific signature genes from published data sets across pseudotime, and found that they exhibit similar expression dynamics to that of Cxcr4 and Dll4, reaching peak expression prior to the initiation of Runx1 and Gfi1 expression. Altogether, our studies support a model in which the initial populations of multipotent progenitors and HSCs emerge independently from HE in the P-Sp/AGM. Furthermore, our findings suggest that HE with HSC competence is uniquely defined by co-expression of arterial endothelial genes and genes encoding HSC self-renewal factors, providing insight into the earliest transcriptional programs that must be coordinated to drive HSC fate from endothelial precursors. Future studies will focus on identifying the signal pathways whose integration promotes expression of these HSC-defining transcriptional programs in endothelial cells, with the goal of advancing methods for HSC generation in vitro. Disclosures Bernstein: Lyell Immunopharma: Current equity holder in publicly-traded company, Other: Laboratory Support; Deverra Therapeutics: Current equity holder in publicly-traded company.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 1651-1651
Author(s):  
Brad Dykstra ◽  
David Kent ◽  
Melisa Hamilton ◽  
Merete Kristiansen ◽  
Kristin Lyons ◽  
...  

Abstract Heterogeneity in progeny output by individual pluripotent hematopoietic cells is a well documented but poorly understood paradigm. Importantly, the extent to which this functional heterogeneity is pre-determined by intrinsic mechanisms that specify distinct programs, as opposed to conditions that result in a series of stochastic events, is still debated. The prospective isolation of phenotypically defined subpopulations with more restricted behaviors has lent recent support to the concept of predetermined hierarchies with preset, but alternative pathways of lineage restriction and differentiated cell output. Here we have used highly purified starting populations to compare the long-term cell output dynamics of individual multipotent repopulating cells in sublethally irradiated W41/W41 mice transplanted with single Ly-5 congenic CD45midlin−Rho−SP adult mouse bone marrow cells (158 mice) or their clonal progeny generated after 4 days in vitro in 300 ng/ml SF, 20 ng/ml IL-11 and 1 ng/ml Flt3-L (194 mice). WBC samples collected 4, 8, 12, 16, and 24 weeks post-transplant were analyzed for donor contributions to the myeloid (GM) and lymphoid (B and T) lineages. In 49 of the 158 mice (31%) and 44 of the 194 mice (23%), the cells produced in vivo contributed ≥1% of all the WBCs present at ≥16 weeks. The overall and lineage-specific contributions to the WBCs in each recipient mouse varied widely both over time post-transplant and between mice. However, examination of the ratio of the donor contributions to the myeloid and lymphoid lineages (GM:B+T) in each mouse at 16 weeks post-transplant allowed 4 patterns to be readily identified: α and β with GM:B+T ratios of ≥2 and 0.25–2, respectively; γ, with a GM:B+T ratio of <0.25 including a ≥1% contribution to both lymphoid and myeloid lineages at 16 weeks; and δ, also with a GM:B+T ratio of <0.25, but with contribution only to the lymphoid lineages at this time. Secondary transplants performed after 24 weeks showed long-term repopulation (≥16 weeks) of most recipients of type α and β progeny (10/11 and 11/12, respectively) but none of the recipients of type γ and δ progeny were repopulated (0/6 and 0/17, respectively). Interestingly, the variation over time in both the overall and lineage-specific contributions was remarkably similar in pairs of secondary recipients injected with cells from the same primary donor. In addition, the lineage contribution ratios seen in the secondary recipients tended to recapitulate that of the primary donors (i.e., α or β), and these trends remained obvious when tertiary transplants were performed. Preservation of stem cell programming was also evident from sequential analyses of multiple mice injected with aliquots of the same clones generated in vitro after 10 days from single CD45midlin−Rho−SP cells. Very similar patterns of total and lineage-specific contributions were again observed amongst the different recipients of cells from the same clones. Collectively, these findings indicate that by early adult life hematopoietic stem cells have acquired intrinsically fixed patterns of lineage specification that can be stably transmitted through many self-renewal generations.


Author(s):  
Fatima Aerts-Kaya

: In contrast to their almost unlimited potential for expansion in vivo and despite years of dedicated research and optimization of expansion protocols, the expansion of Hematopoietic Stem Cells (HSCs) in vitro remains remarkably limited. Increased understanding of the mechanisms that are involved in maintenance, expansion and differentiation of HSCs will enable the development of better protocols for expansion of HSCs. This will allow procurement of HSCs with long-term engraftment potential and a better understanding of the effects of the external influences in and on the hematopoietic niche that may affect HSC function. During collection and culture of HSCs, the cells are exposed to suboptimal conditions that may induce different levels of stress and ultimately affect their self-renewal, differentiation and long-term engraftment potential. Some of these stress factors include normoxia, oxidative stress, extra-physiologic oxygen shock/stress (EPHOSS), endoplasmic reticulum (ER) stress, replicative stress, and stress related to DNA damage. Coping with these stress factors may help reduce the negative effects of cell culture on HSC potential, provide a better understanding of the true impact of certain treatments in the absence of confounding stress factors. This may facilitate the development of better ex vivo expansion protocols of HSCs with long-term engraftment potential without induction of stem cell exhaustion by cellular senescence or loss of cell viability. This review summarizes some of available strategies that may be used to protect HSCs from culture-induced stress conditions.


2000 ◽  
Vol 31 (3) ◽  
pp. 499-509 ◽  
Author(s):  
Joel S. Greenberger ◽  
Julie P. Goff ◽  
Jason Bush ◽  
Alfred Bahnson ◽  
Douglas Koebler ◽  
...  

2020 ◽  
Vol 88 ◽  
pp. S51
Author(s):  
Victoria Sun ◽  
Amelie Montel-Hagen ◽  
David Casero ◽  
Steven Tsai ◽  
Alexandre Zampieri ◽  
...  

Blood ◽  
2006 ◽  
Vol 108 (4) ◽  
pp. 1189-1197 ◽  
Author(s):  
Hua Tang ◽  
Zhenhong Guo ◽  
Minghui Zhang ◽  
Jianli Wang ◽  
Guoyou Chen ◽  
...  

Abstract Regulatory dendritic cells (DCs) have been reported recently, but their origin is poorly understood. Our previous study demonstrated that splenic stroma can drive mature DCs to proliferate and differentiate into regulatory DCs, and their natural counterpart with similar regulatory function in normal spleens has been identified. Considering that the spleen microenvironment supports hematopoiesis and that hematopoietic stem cells (HSCs) are found in spleens of adult mice, we wondered whether splenic microenvironment could differentiate HSCs into regulatory DCs. In this report, we demonstrate that endothelial splenic stroma induce HSCs to differentiate into a distinct regulatory DC subset with high expression of CD11b but low expression of Ia. CD11bhiIalo DCs secreting high levels of TGF-β, IL-10, and NO can suppress T-cell proliferation both in vitro and in vivo. Furthermore, CD11bhiIalo DCs have the ability to potently suppress allo-DTH in vivo, indicating their preventive or therapeutic perspectives for some immunologic disorders. The inhibitory function of CD11bhiIalo DCs is mediated through NO but not through induction of regulatory T (Treg) cells or T-cell anergy. IL-10, which is secreted by endothelial splenic stroma, plays a critical role in the differentiation of the regulatory CD11bhiIalo DCs from HSCs. These results suggest that splenic microenvironment may physiologically induce regulatory DC differentiation in situ.


Sign in / Sign up

Export Citation Format

Share Document