scholarly journals Recent Developments in Supercapacitor Electrodes: A Mini Review

2022 ◽  
Vol 6 (1) ◽  
pp. 5
Author(s):  
Sumedha Harike Nagarajarao ◽  
Apurva Nandagudi ◽  
Ramarao Viswanatha ◽  
Basavanakote Mahadevappa Basavaraja ◽  
Mysore Sridhar Santosh ◽  
...  

The use of nonrenewable fossil fuels for energy has increased in recent decades, posing a serious threat to human life. As a result, it is critical to build environmentally friendly and low-cost reliable and renewable energy storage solutions. The supercapacitor is a future energy device because of its higher power density and outstanding cyclic stability with a quick charge and discharge process. Supercapacitors, on the other hand, have a lower energy density than regular batteries. It is well known that the electrochemical characteristic of supercapacitors is strongly dependent on electrode materials. The current review highlights advance in the TMOs for supercapacitor electrodes. In addition, the newly discovered hybrid/pseudo-supercapacitors have been discussed. Metal oxides that are employed as electrode materials are the focus of this study. The discovery of nanostructured electrode materials continues to be a major focus of supercapacitor research. To create high-performance electrode materials from a morphological standpoint, various efforts have been attempted. Lastly, we analyze the supercapacitor’s evolving trend and our perspective for the future generations of supercapacitors.

Nanomaterials ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 1248
Author(s):  
Ruibin Liang ◽  
Yongquan Du ◽  
Peng Xiao ◽  
Junyang Cheng ◽  
Shengjin Yuan ◽  
...  

In the past decades, the energy consumption of nonrenewable fossil fuels has been increasing, which severely threatens human life. Thus, it is very urgent to develop renewable and reliable energy storage devices with features of environmental harmlessness and low cost. High power density, excellent cycle stability, and a fast charge/discharge process make supercapacitors a promising energy device. However, the energy density of supercapacitors is still less than that of ordinary batteries. As is known to all, the electrochemical performance of supercapacitors is largely dependent on electrode materials. In this review, we firstly introduced six typical transition metal oxides (TMOs) for supercapacitor electrodes, including RuO2, Co3O4, MnO2, ZnO, XCo2O4 (X = Mn, Cu, Ni), and AMoO4 (A = Co, Mn, Ni, Zn). Secondly, the problems of these TMOs in practical application are presented and the corresponding feasible solutions are clarified. Then, we summarize the latest developments of the six TMOs for supercapacitor electrodes. Finally, we discuss the developing trend of supercapacitors and give some recommendations for the future of supercapacitors.


Author(s):  
Kathryn Holguin ◽  
Motahareh Mohammadiroudbari ◽  
Kaiqiang Qin ◽  
Chao Luo

Na-ion batteries (NIBs) are promising alternatives to Li-ion batteries (LIBs) due to the low cost, abundance, and high sustainability of sodium resources. However, the high performance of inorganic electrode materials...


Author(s):  
Hyo-Young Kim ◽  
Seon-Yeong Lee ◽  
In-Yup Jeon ◽  
Jeeyoung Shin ◽  
Young-Wan Ju

Concerns associated with global warming and the depleting reserves of fossil fuels have highlighted the importance of high-performance energy storage systems (ESSs) for efficient energy usage. ESSs such as supercapacitors can contribute to improved power quality of an energy generation system, which is characterized by a slow load response. Composite materials are primarily used as supercapacitor electrodes because they can compensate for the disadvantages of carbon or metal oxide electrode materials. In this study, a composite of oxide nanoparticles loaded on a carbon nanofiber support was used as an electrode material for a hybrid supercapacitor. The addition of a small amount of hydrophobic Fe- and N-doped graphene nanoplates modified the surface properties of carbon nanofibers prepared by electrospinning. Accordingly, the effects of the hydrophobic/hydrophilic surface properties of the nanofiber support on the morphology of Co3O4 nanoparticles loaded on the nanofiber, as well as the performance of the supercapacitor, were systematically investigated.


Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7621
Author(s):  
Hyo-Young Kim ◽  
Seon-Yeong Lee ◽  
In-Yup Jeon ◽  
Jeeyoung Shin ◽  
Young-Wan Ju

Concerns associated with global warming and the depleting reserves of fossil fuels have highlighted the importance of high−performance energy storage systems (ESSs) for efficient energy usage. ESSs such as supercapacitors can contribute to improved power quality of an energy generation system, which is characterized by a slow load response. Composite materials are primarily used as supercapacitor electrodes because they can compensate for the disadvantages of carbon or metal oxide electrode materials. In this study, a composite of oxide nanoparticles loaded on a carbon nanofiber support was used as an electrode material for a hybrid supercapacitor. The addition of a small amount of hydrophilic FeN@GnP (Fe− and N−doped graphene nanoplates) modified the surface properties of carbon nanofibers prepared by electrospinning. Accordingly, the effects of the hydrophobic/hydrophilic surface properties of the nanofiber support on the morphology of Co3O4 nanoparticles loaded on the nanofiber, as well as the performance of the supercapacitor, were systematically investigated.


2017 ◽  
Vol 43 (3) ◽  
pp. 2956-2961 ◽  
Author(s):  
Shuoqing Zhao ◽  
Tianmo Liu ◽  
Le Yu ◽  
Wen Zeng ◽  
Yangyang Zhang ◽  
...  

Author(s):  
Guixiang Wang ◽  
Haitao Zou ◽  
Xiaobo Zhu ◽  
Mei Ding ◽  
Chuankun Jia

Abstract Zinc-based redox flow batteries (ZRFBs) have been considered as ones of the most promising large-scale energy storage technologies owing to their low cost, high safety, and environmental friendliness. However, their commercial application is still hindered by a few key problems. First, the hydrogen evolution and zinc dendrite formation cause poor cycling life, of which needs to ameliorated or overcome by finding suitable anolytes. Second, the stability and energy density of catholytes are unsatisfactory due to oxidation, corrosion, and low electrolyte concentration. Meanwhile, highly catalytic electrode materials remain to be explored and the ion selectivity and cost efficiency of membrane materials demands further improvement. In this review, we summarize different types of ZRFBs according to their electrolyte environments including ZRFBs using neutral, acidic, and alkaline electrolytes, then highlight the advances of key materials including electrode and membrane materials for ZRFBs, and finally discuss the challenges and perspectives for the future development of high-performance ZRFBs.


Molecules ◽  
2019 ◽  
Vol 24 (12) ◽  
pp. 2263 ◽  
Author(s):  
Xiaoning Wang ◽  
Dan Wu ◽  
Xinhui Song ◽  
Wei Du ◽  
Xiangjin Zhao ◽  
...  

Polyaniline has been widely used in high-performance pseudocapacitors, due to its low cost, easy synthesis, and high theoretical specific capacitance. However, the poor mechanical properties of polyaniline restrict its further development. Compared with polyaniline, functionalized carbon materials have excellent physical and chemical properties, such as porous structures, excellent specific surface area, good conductivity, and accessibility to active sites. However, it should not be neglected that the specific capacity of carbon materials is usually unsatisfactory. There is an effective strategy to combine carbon materials with polyaniline by a hybridization approach to achieve a positive synergistic effect. After that, the energy storage performance of carbon/polyaniline hybridization material has been significantly improved, making it a promising and important electrode material for supercapacitors. To date, significant progress has been made in the synthesis of various carbon/polyaniline binary composite electrode materials. In this review, the corresponding properties and applications of polyaniline and carbon hybrid materials in the energy storage field are briefly reviewed. According to the classification of different types of functionalized carbon materials, this article focuses on the recent progress in carbon/polyaniline hybrid materials, and further analyzes their corresponding properties to provide guidance for the design, synthesis, and component optimization for high-performance supercapacitors.


Molecules ◽  
2020 ◽  
Vol 25 (23) ◽  
pp. 5558
Author(s):  
Dimitra Vernardou ◽  
Charalampos Drosos ◽  
Andreas Kafizas ◽  
Martyn E. Pemble ◽  
Emmanouel Koudoumas

The need for clean and efficient energy storage has become the center of attention due to the eminent global energy crisis and growing ecological concerns. A key component in this effort is the ultra-high performance battery, which will play a major role in the energy industry. To meet the demands in portable electronic devices, electric vehicles, and large-scale energy storage systems, it is necessary to prepare advanced batteries with high safety, fast charge ratios, and discharge capabilities at a low cost. Cathode materials play a significant role in determining the performance of batteries. Among the possible electrode materials is vanadium pentoxide, which will be discussed in this review, due to its low cost and high theoretical capacity. Additionally, aqueous electrolytes, which are environmentally safe, provide an alternative approach compared to organic media for safe, cost-effective, and scalable energy storage. In this review, we will reveal the industrial potential of competitive methods to grow cathodes with excellent stability and enhanced electrochemical performance in aqueous media and lay the foundation for the large-scale production of electrode materials.


Materials ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 703 ◽  
Author(s):  
Qi Li ◽  
Michael Horn ◽  
Yinong Wang ◽  
Jennifer MacLeod ◽  
Nunzio Motta ◽  
...  

Supercapacitors are a highly promising class of energy storage devices due to their high power density and long life cycle. Conducting polymers (CPs) and organic molecules are potential candidates for improving supercapacitor electrodes due to their low cost, large specific pseudocapacitance and facile synthesis methods. Graphene, with its unique two-dimensional structure, shows high electrical conductivity, large specific surface area and outstanding mechanical properties, which makes it an excellent material for lithium ion batteries, fuel cells and supercapacitors. The combination of CPs and graphene as electrode material is expected to boost the properties of supercapacitors. In this review, we summarize recent reports on three different CP/graphene composites as electrode materials for supercapacitors, discussing synthesis and electrochemical performance. Novel flexible and wearable devices based on CP/graphene composites are introduced and discussed, with an eye to recent developments and challenges for future research directions.


Sign in / Sign up

Export Citation Format

Share Document