A Binary Integer Programming Method for Optimal Wind Turbines Allocation
The present study introduces a Binary Integer Programming (BIP) method to minimize the number of wind turbines needed to be installed in a wind farm. The locations of wind turbines are selected in a virtual grid which is constructed considering a minimum distance between the wind turbines to avoid the wake effect. Additional equality constraints are also included to the proposed formulation to prohibit or enforce the installation of wind turbines placement at specific locations of the wind farmland. Moreover, a microscopic wind turbine placement considering the local air density is studied. To verify the efficiency of this proposal, a square site was subdivided into 25 square cells providing a virtual grid with 36 candidate placement locations. Moreover, a virtual grid with 121 vertices related with a Greek island is also tested. All simulations conducted considering the area of geographical territory, the length of wind turbine blades, as well as the capacity of each turbine.