scholarly journals A Binary Integer Programming Method for Optimal Wind Turbines Allocation

2021 ◽  
Vol 3 (2) ◽  
pp. 462-473
Author(s):  
Nikolaos M. Manousakis ◽  
Constantinos S. Psomopoulos ◽  
George Ch. Ioannidis ◽  
Stavros D. Kaminaris

The present study introduces a Binary Integer Programming (BIP) method to minimize the number of wind turbines needed to be installed in a wind farm. The locations of wind turbines are selected in a virtual grid which is constructed considering a minimum distance between the wind turbines to avoid the wake effect. Additional equality constraints are also included to the proposed formulation to prohibit or enforce the installation of wind turbines placement at specific locations of the wind farmland. Moreover, a microscopic wind turbine placement considering the local air density is studied. To verify the efficiency of this proposal, a square site was subdivided into 25 square cells providing a virtual grid with 36 candidate placement locations. Moreover, a virtual grid with 121 vertices related with a Greek island is also tested. All simulations conducted considering the area of geographical territory, the length of wind turbine blades, as well as the capacity of each turbine.

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2319
Author(s):  
Hyun-Goo Kim ◽  
Jin-Young Kim

This study analyzed the performance decline of wind turbine with age using the SCADA (Supervisory Control And Data Acquisition) data and the short-term in situ LiDAR (Light Detection and Ranging) measurements taken at the Shinan wind farm located on the coast of Bigeumdo Island in the southwestern sea of South Korea. Existing methods have generally attempted to estimate performance aging through long-term trend analysis of a normalized capacity factor in which wind speed variability is calibrated. However, this study proposes a new method using SCADA data for wind farms whose total operation period is short (less than a decade). That is, the trend of power output deficit between predicted and actual power generation was analyzed in order to estimate performance aging, wherein a theoretically predicted level of power generation was calculated by substituting a free stream wind speed projecting to a wind turbine into its power curve. To calibrate a distorted wind speed measurement in a nacelle anemometer caused by the wake effect resulting from the rotation of wind-turbine blades and the shape of the nacelle, the free stream wind speed was measured using LiDAR remote sensing as the reference data; and the nacelle transfer function, which converts nacelle wind speed into free stream wind speed, was derived. A four-year analysis of the Shinan wind farm showed that the rate of performance aging of the wind turbines was estimated to be −0.52%p/year.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1796
Author(s):  
Francesco Castellani ◽  
Davide Astolfi

This Special Issue collects innovative contributions in the field of wind turbine optimization technology. The general motivation of the present Special Issue is given by the fact that there has recently been a considerable boost of the quest for wind turbine efficiency optimization in the academia and in the wind energy practitioners communities. The optimization can be focused on technology and operation of single turbine or a group of machines within a wind farm. This perspective is evidently multi-faced and the seven papers composing this Special Issue provide a representative picture of the most ground-breaking state of the art about the subject. Wind turbine power optimization means scientific research about the design of innovative aerodynamic solutions for wind turbine blades and of wind turbine single or collective control, especially for increasing rotor size and exploitation in offshore environment. It should be noticed that some recently developed aerodynamic and control solutions have become available in the industry practice and therefore an interesting line of development is the assessment of the actual impact of optimization technology for wind turbines operating in field: this calls for non-trivial data analysis and statistical methods. The optimization approach must be 360 degrees; for this reason also offshore resource should be addressed with the most up to date technologies such as floating wind turbines, in particular as regards support structures and platforms to be employed in ocean environment. Finally, wind turbine power optimization means as well improving wind farm efficiency through innovative uses of pre-existent control techniques: this is employed, for example, for active control of wake interactions in order to maximize the energy yield and minimize the fatigue loads.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5207 ◽  
Author(s):  
Fahed Martini ◽  
Leidy Tatiana Contreras Montoya ◽  
Adrian Ilinca

When operating in cold climates, wind turbines are vulnerable to ice accretion. The main impact of icing on wind turbines is the power losses due to geometric deformation of the iced airfoils of the blades. Significant energy losses during the wind farm lifetime must be estimated and mitigated. Finding solutions for icing calls on several areas of knowledge. Modelling and simulation as an alternative to experimental tests are primary techniques used to account for ice accretion because of their low cost and effectiveness. Several studies have been conducted to replicate ice growth on wind turbine blades using Computational Fluid Dynamics (CFD) during the last decade. While inflight icing research is well developed and well documented, wind turbine icing is still in development and has its peculiarities. This paper surveys and discusses the models, approaches and methods used in ice accretion modelling in view of their application in wind energy while summarizing the recent research findings in Surface Roughness modelling and Droplets Trajectory modelling. An An additional section discusses research on the modelling of electro-thermal icing protection systems. This paper aims to guide researchers in wind engineering to the appropriate approaches, references and tools needed to conduct reliable icing modelling for wind turbines.


Author(s):  
U. Nopp-Mayr ◽  
F. Kunz ◽  
F. Suppan ◽  
E. Schöll ◽  
J. Coppes

AbstractIncreasing numbers of wind power plants (WPP) are constructed across the globe to reduce the anthropogenic contribution to global warming. There are, however, concerns on the effects of WPP on human health as well as related effects on wildlife. To address potential effects of WPP in environmental impact assessments, existing models accounting for shadow flickering and noise are widely applied. However, a standardized, yet simple and widely applicable proxy for the visibility of rotating wind turbines in woodland areas was largely lacking up to date. We combined land cover information of forest canopy extracted from orthophotos and airborne laser scanning (LiDAR) data to represent the visibility of rotating wind turbines in five woodland study sites with a high spatial resolution. Performing an in-situ validation in five study areas across Europe which resulted in a unique sample of 1738 independent field observations, we show that our approach adequately predicts from where rotating wind turbine blades are visible within woodlands or not. We thus provide strong evidence, that our approach yields a valuable proxy of the visibility of moving rotor blades with high resolution which in turn can be applied in environmental impact assessments of WPP within woodlands worldwide.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1124
Author(s):  
Leon Mishnaevsky Mishnaevsky

Various scenarios of end-of-life management of wind turbine blades are reviewed. “Reactive” strategies, designed to deal with already available, ageing turbines, installed in the 2000s, are discussed, among them, maintenance and repair, reuse, refurbishment and recycling. The main results and challenges of “pro-active strategies”, designed to ensure recyclability of new generations of wind turbines, are discussed. Among the main directions, the wind turbine blades with thermoplastic and recyclable thermoset composite matrices, as well as wood, bamboo and natural fiber-based composites were reviewed. It is argued that repair and reuse of wind turbine blades, and extension of the blade life has currently a number of advantages over other approaches. While new recyclable materials have been tested in laboratories, or in some cases on small or medium blades, there are remaining technological challenges for their utilization in large wind turbine blades.


2018 ◽  
Vol 207 ◽  
pp. 02004
Author(s):  
M. Rajaram Narayanan ◽  
S. Nallusamy ◽  
M. Ragesh Sathiyan

In the global scenario, wind turbines and their aerodynamics are always subjected to constant research for increasing their efficiency which converts the abundant wind energy into usable electrical energy. In this research, an attempt is made to increase the efficiency through the changes in surface topology of wind turbines through computational fluid dynamics. Dimples on the other hand are very efficient in reducing air drag as is it evident from the reduction of drag and increase in lift in golf balls. The predominant factors influencing the efficiency of the wind turbines are lift and drag which are to be maximized and minimized respectively. In this research, surface of turbine blades are integrated with dimples of various sizes and arrangements and are analyzed using computational fluid dynamics to obtain an optimum combination. The analysis result shows that there is an increase in power with about 15% increase in efficiency. Hence, integration of dimples on the surface of wind turbine blades has helped in increasing the overall efficiency of the wind turbine.


2014 ◽  
Vol 1014 ◽  
pp. 124-127
Author(s):  
Zhi Qiang Xu ◽  
Jian Huang

Wind turbines consists of three key parts, namely, wind wheels (including blades, hub, etc.), cabin (including gearboxes, motors, controls, etc.) and the tower and Foundation. Wind turbine wheel is the most important part ,which is made up of blades and hubs. Blade has a good aerodynamic shape, which will produce aerodynamic in the airflow rotation, converting wind energy into mechanical energy, and then, driving the generator into electrical energy by gearbox pace. Wind turbine operates in the natural environment, their load wind turbine blades are more complex. Therefore load calculations and strength analysis for wind turbine design is very important. Wind turbine blades are core components of wind turbines, so understanding of their loads and dynamics by which the load on the wind turbine blade design is of great significance.


Author(s):  
Yogesh Ramesh Patel

This paper provides a brief overview of the research in the field of Fluid-structure interaction in Wind Turbines. Fluid-Structure Interaction (FSI) is the interplay of some movable or deformable structure with an internal or surrounding fluid flow. Flow brought about vibrations of two airfoils used in wind turbine blades are investigated by using a strong coupled fluid shape interplay approach. The approach is based totally on a regularly occurring Computational Fluid Dynamics (CFD) code that solves the Navier-Stokes equations defined in Arbitrary Lagrangian-Eulerian (ALE) coordinates by way of a finite extent method. The need for the FSI in the wind Turbine system is studied and comprehensively presented.


2013 ◽  
Vol 558 ◽  
pp. 84-91 ◽  
Author(s):  
Paritosh Giri ◽  
Jung Ryul Lee

With commercially viable global wind power potential, wind energy penetration is further expected to rise, as will the related problems. One issue is the collision of wind turbine blades with the tower during operation. Structured health monitoring is required to improve operational safety, minimize the risk of sudden failure or total breakdown, ensure reliable power generation, and reduce wind turbine life cycle costs. Large numbers of sensors such as fiber Bragg grating and piezoelectric devices have been attached to the structure, a design that is uneconomical and impractical for use in large wind turbines. This study proposes a single laser displacement sensor (LDS) system in which all of the rotating blades could be cost-effectively evaluated. Contrary to the approach of blade sensor installation, the LDS system is installed in the tower to enable noncontact blade displacement monitoring. The concept of a noncontact sensor and actuator and their energy delivery device installation in the tower will enable various approaches for wind turbine structural health monitoring. Blade bolt loosening causes deflection in the affected blade. Similarly, nacelle tilt or mass loss damage in the blade will result in changes in blade deflection, but the proposed system can identify such problems with ease. With the need of more energy, the sizes of wind blades are getting bigger and bigger. Due to the large size of wind turbine, nowadays wind turbines are installed very high above the ground or water level. It is impractical to monitor the results from LDS through wired connection in these cases. Hence, the wired connection of LDS to base (monitoring) station must be replaced by a wireless solution. This wireless solution is achieved using Zigbee technology. Zigbee operates in the industrial, scientific and medical (ISM) radio bands, typically 2.4 GHz, 915 MHz and 868 MHz. The output from the LDS is fed to the microcontroller which acts as an analog to digital converter. The output from the microcontroller is connected to the Zigbee transceiver module, which transmits the data and at the other end, the zigbee reads the data and displays on the PC from where user can monitor the condition of wind blades.


Sign in / Sign up

Export Citation Format

Share Document