scholarly journals Applicability of Agro-Industrial By-Products in Intelligent Food Packaging

Coatings ◽  
2020 ◽  
Vol 10 (6) ◽  
pp. 550 ◽  
Author(s):  
Silvia Amalia Nemes ◽  
Katalin Szabo ◽  
Dan Cristian Vodnar

Nowadays, technological advancement is in continuous development in all areas, including food packaging, which tries to find a balance between consumer preferences, environmental safety, and issues related to food quality and control. The present paper concretely details the concepts of smart, active, and intelligent packaging and identifies commercially available examples used in the food packaging market place. Along with this purpose, several bioactive compounds are identified and described, which are compounds that can be recovered from the by-products of the food industry and can be integrated into smart food packaging supporting the “zero waste” activities. The biopolymers obtained from crustacean processing or compounds with good antioxidant or antimicrobial properties such as carotenoids extracted from agro-industrial processing are underexploited and inexpensive resources for this purpose. Along with the main agro-industrial by-products, more concrete examples of resources are presented, such as grape marc, banana peels, or mango seeds. The commercial and technological potential of smart packaging in the food industry is undeniable and most importantly, this paper highlights the possibility of integrating the by-products derived compounds to intelligent packaging elements (sensors, indicators, radio frequency identification).

2021 ◽  
Vol 13 (12) ◽  
pp. 6921
Author(s):  
Laura Sisti ◽  
Annamaria Celli ◽  
Grazia Totaro ◽  
Patrizia Cinelli ◽  
Francesca Signori ◽  
...  

In recent years, the circular economy and sustainability have gained attention in the food industry aimed at recycling food industrial waste and residues. For example, several plant-based materials are nowadays used in packaging and biofuel production. Among them, by-products and waste from coffee processing constitute a largely available, low cost, good quality resource. Coffee production includes many steps, in which by-products are generated including coffee pulp, coffee husks, silver skin and spent coffee. This review aims to analyze the reasons why coffee waste can be considered as a valuable source in recycling strategies for the sustainable production of bio-based chemicals, materials and fuels. It addresses the most recent advances in monomer, polymer and plastic filler productions and applications based on the development of viable biorefinery technologies. The exploration of strategies to unlock the potential of this biomass for fuel productions is also revised. Coffee by-products valorization is a clear example of waste biorefinery. Future applications in areas such as biomedicine, food packaging and material technology should be taken into consideration. However, further efforts in techno-economic analysis and the assessment of the feasibility of valorization processes on an industrial scale are needed.


Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2114
Author(s):  
Saeed Paidari ◽  
Reza Tahergorabi ◽  
Ensieh Sadat Anari ◽  
Abdorezza Moahammdi Nafchi ◽  
Nafiseh Zamindar ◽  
...  

Nanotechnology has provided new opportunities for the food industry with its applications in food packaging. The addition of nanoparticles, such as clay, silver and copper, can improve the mechanical and antimicrobial properties of food packaging. However, nanoparticles may have an adverse impact on human health. This has led to legislative and regulatory concerns. The inhibitory effects of nano packaging on different microorganisms, such as Salmonella, E. coli, and molds, have been studied. Nanoparticles, like other materials, may have a diverse set of properties that need to be determined. In this review, different features of silver, clay and copper nanoparticles, such as their anti-microbial, cell toxicity, genetic toxicity, mechanical properties, and migration, are critically evaluated in the case of food packaging. Specifically, the viewpoints of WHO, FDA, and ESFA, concerning the nano-silver application in food packaging, are discussed as well.


Foods ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 857 ◽  
Author(s):  
Flavia Dilucia ◽  
Valentina Lacivita ◽  
Amalia Conte ◽  
Matteo A. Del Nobile

Fruit and vegetable by-products are the most abundant food waste. Industrial processes such as oil, juice, wine or sugar production greatly contribute to this amount. These kinds of residues are generally thrown away in form of leftover and used as feed or composted, but they are a great source of bioactive compounds like polyphenols, vitamins or minerals. The amount of residue with potential utilization after processing has been estimated in millions of tons every year. For this reason, many researchers all around the world are making great efforts to valorize and reuse these valuable resources. Of greatest importance is the by-product potential to enhance the properties of packaging intended for food applications. Therefore, this overview collects the most recent researches dealing with fruit and vegetable by-products used to enhance physical, mechanical, antioxidant and antimicrobial properties of packaging systems. Recent advances on synthetic or bio-based films enriched with by-product components are extensively reviewed, with an emphasis on the role that by-product extracts can play in food packaging materials.


Resources ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 7
Author(s):  
Maria Carpena ◽  
Bernabe Nuñez-Estevez ◽  
Anton Soria-Lopez ◽  
Paula Garcia-Oliveira ◽  
Miguel A. Prieto

The food industry is continuously evolving through the application of innovative tools and ingredients towards more effective, safe, natural and ecofriendly solutions to satisfy the demands of the costumers. In this context, natural sources (i.e., leaves, seeds, peels or unused pulp) can entail a valuable source of compounds, such as essential oils (EOs), with recognized antioxidant and antimicrobial properties that can be used as natural additives in packaging applications. The current trend is the incorporation of EOs into diverse kinds of biodegradable materials, such as edible films, thus developing active packaging systems with improved preservation properties that can offer benefits to both the food and packaging industry by reducing food waste and improving the management of packaging waste. EOs may be added into the packaging material as free or encapsulated molecules, where, especially this last option, has been revealed as very promising. The addition of these lipophilic compounds provides to the end-product various bioactivities of interest, which can eventually extend the shelf-life of the product by preventing food spoilage. Pairing biodegradable packaging with EOs extracted from natural agro-industrial by-products can lead to a more sustainable food industry. Recent knowledge and advances on this issue will be reviewed in the present work.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 2921
Author(s):  
Marta Giannelli ◽  
Valentina Lacivita ◽  
Tamara Posati ◽  
Annalisa Aluigi ◽  
Amalia Conte ◽  
...  

In this study, a bio-based polymeric system loaded with fruit by-products was developed. It was based on silk fibroin produced by the silkworm Bombyx mori and pomegranate peel powder, selected as active agent. The weight ratio between fibroin and pomegranate powder was 30:70. Pads also contained 20% w/w of glycerol vs. fibroin to induce water insolubility. Control systems, consisting of only fibroin and glycerol, were produced as reference. Both control and active systems were characterized for structural and morphological characterization (Fourier-transform infrared spectroscopy and optical microscope), antioxidant properties and antimicrobial activity against two foodborne spoilage microorganisms. Results demonstrate that under investigated conditions, an active system was obtained. The pad showed a good water stability, with weight loss of about 28% due to the release of the active agent and not to the fibroin loss. In addition, this edible system has interesting antioxidant and antimicrobial properties. In particular, the pad based on fibroin with pomegranate peel recorded an antioxidant activity of the same order of magnitude of that of vitamin C, which is one of the most well-known antioxidant compounds. As regards the antimicrobial properties, results underlined that pomegranate peel in the pad allowed maintaining microbial concentration around the same initial level (104 CFU/mL) for more than 70 h of monitoring, compared to the control system where viable cell concentration increased very rapidly up to 108 CFU/mL.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Vita Lele ◽  
Ema Monstaviciute ◽  
Ieva Varinauskaite ◽  
Gabriele Peckaityte ◽  
Laura Paskeviciute ◽  
...  

Sustainable and environmentally friendly approaches to the production of health foods have become very popular. The concept of this study was to develop chewing candy (CC)—nutraceutical formulations based on sea buckthorn (Hippophae rhamnoides L.) and quince (Cydonia oblonga L.) juice and juice by-products (BuJ, QuJ, BuBP, and QuBP, resp.), as ingredients showing antimicrobial properties against Klebsiella pneumoniae, Salmonella enterica, Pseudomonas aeruginosa, Acinetobacter baumannii, Proteus mirabilis, methicillin-resistant Staphylococcus aureus (MRSA), Enterococcus faecalis, E. faecium, and Bacillus cereus. Two texture-forming agents (agar and gelatin) were tested for CC formulation. BuJ, QuJ, BuBP, and QuBP showed antimicrobial activity against all the pathogens tested, and the largest inhibition zones against Bacillus and Proteus mirabilis were observed for BuJ and QuJ, respectively. Agar and/or gelatin selection has a significant influence on CC texture (p=0.0001), and interactions of agar and/or gelatin selection × juice or juice by-products and sea buckthorn or quince × juice or juice by-products were also significant (p=0.0001). The best acceptability was shown for CC prepared with agar and BuBP (131.7) and with gelatin and QuJ (132.0). The addition of BuJ, QuJ, BuBP, and QuBP increases the antioxidant activity of CC by five times. Finally, not just juice, but also juice by-products, have great potential as desirable antimicrobial ingredients for the food industry.


2017 ◽  
Vol 35 (No. 1) ◽  
pp. 1-6 ◽  
Author(s):  
Barska Anetta ◽  
Wyrwa Joanna

The manufacturers have to provide modern and safe packaging due to the growing consumer interest in the consumption of fresh products with extended shelf-life and controlled quality. It is a challenge to the food packaging industry and it also acts as a driving force for the development of new and improved concepts of packaging technology. It is in order to meet these needs that intelligent packaging can be applied. This article presents a generation of packaging which allows maintaining and even improving the quality of the packaged product, which is an essential advantage particularly in the food industry. The most important advantage resulting from their use is a reduction in the loss of food products due to the extension of their shelf life.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 2148
Author(s):  
Carolina Rodrigues ◽  
Victor Gomes Lauriano Souza ◽  
Isabel Coelhoso ◽  
Ana Luísa Fernando

Intelligent food packaging is emerging as a novel technology, capable of monitoring the quality and safety of food during its shelf-life time. This technology makes use of indicators and sensors that are applied in the packaging and that detect changes in physiological variations of the foodstuffs (due to microbial and chemical degradation). These indicators usually provide information, e.g., on the degree of freshness of the product packed, through a color change, which is easily identified, either by the food distributor and the consumer. However, most of the indicators that are currently used are non-renewable and non-biodegradable synthetic materials. Because there is an imperative need to improve food packaging sustainability, choice of sensors should also reflect this requirement. Therefore, this work aims to revise the latest information on bio-based sensors, based on compounds obtained from natural extracts, that can, in association with biopolymers, act as intelligent or smart food packaging. Its application into several perishable foods is summarized. It is clear that bioactive extracts, e.g., anthocyanins, obtained from a variety of sources, including by-products of the food industry, present a substantial potential to act as bio-sensors. Yet, there are still some limitations that need to be surpassed before this technology reaches a mature commercial stage.


Author(s):  
D. Fino ◽  
◽  
Y.S. Camacho ◽  
S Bensaid ◽  
B. Ruggeri ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document