scholarly journals Research on the Metal Corrosion Process in the Sea Mud/Seawater/Atmosphere Interface Zone

Coatings ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 1219
Author(s):  
Zhiwei Chen ◽  
Wenting Xia ◽  
Caiqi Yao ◽  
Zhifeng Lin ◽  
Wei Zhang ◽  
...  

Corrosion in the interface zone is a complicated local corrosion phenomenon. The conventional single-electrode method finds it difficult to obtain the kinetic information of corrosion occurrence and development process. In this paper, metal corrosion was studied by Wire Beam Electrode (WBE) technology on the interfaces of sea mud/seawater and seawater/atmosphere. The study found that the metal corrosion in the interface is a process of coupling a dual corrosion cell into a single corrosion cell. Initially, a corrosion cell is formed with the seawater/atmosphere interface acting as the cathode and the upper part of the metal in the seawater area as the anode. This is due to the oxygen concentration cell caused by the waterline effect. The cathode area is always enriched near the seawater/atmosphere interface. The lower part of the metal in the seawater area and the metal in the sea mud area are the anode and the cathode, respectively, of another corrosion cell. Along with the immersion time, the anodic area of the first corrosion cell gradually extends to the lower part of the metal in the seawater zone and finally the sea mud zone, resulting in the disappearance of the second corrosion cell. In the single corrosion cell stage, the seawater/atmosphere interface is the cathode area; the seawater area and the sea mud area are the anode areas, and the electrode adjacent to the cathode area becomes the anode area with the largest current density. During the whole experiment, the sea mud zone is a process of polarity transition from the cathode zone to the anode zone, and finally forms the anode zone of the whole electrode together with the anode zone in the sea zone.

2015 ◽  
Vol 34 (10) ◽  
pp. 13-22 ◽  
Author(s):  
Shu Yang ◽  
Qian Yang ◽  
Sai Liu ◽  
Deling Cai ◽  
Keming Qu ◽  
...  
Keyword(s):  
The Past ◽  
Sea Mud ◽  

2012 ◽  
Vol 55 (10) ◽  
pp. 1656-1668 ◽  
Author(s):  
BangQi Hu ◽  
ZuoSheng Yang ◽  
MeiXun Zhao ◽  
Yoshiki Saito ◽  
DeJiang Fan ◽  
...  

2007 ◽  
Vol 553 ◽  
pp. 152-163
Author(s):  
César A.C. Sequeira

In the history of electrode processes, intermediates are of extraordinary interest. In the lecture which follows, the most common types of intermediates in electrode processes are classified. Secondly, most of the methods which are available and have been used in finding intermediates are characterised. Thirdly, the principles of detection of intermediate and final products of electrode processes on the basis of kinetic information obtained by means of the rotating ring-disc electrode method are discussed. This approach is used for identification of the products of an organic electroreduction. In conclusion, it is demonstrated that the cathodic reduction of such organic compounds involves formation of stable and unstable intermediates.


2016 ◽  
Vol 59 (6) ◽  
pp. 1216-1224 ◽  
Author(s):  
Peng Wu ◽  
XiaoTong Xiao ◽  
ShuQin Tao ◽  
ZuoSheng Yang ◽  
HaiLong Zhang ◽  
...  

2013 ◽  
Vol 12 (4) ◽  
pp. 599-604 ◽  
Author(s):  
Lei Xing ◽  
Yiqing Jiang ◽  
Zineng Yuan ◽  
Hailong Zhang ◽  
Li Li ◽  
...  

2013 ◽  
Vol 12 (4) ◽  
pp. 639-646 ◽  
Author(s):  
Xiaochen Zhao ◽  
Shuqin Tao ◽  
Rongping Zhang ◽  
Hailong Zhang ◽  
Zuosheng Yang ◽  
...  

Coatings ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 684 ◽  
Author(s):  
Zhiwei Chen ◽  
Wei Zhang ◽  
Yi Zhan ◽  
Bing Lei ◽  
Tianying Sun ◽  
...  

Water-line corrosion is a highly concentrated type of localized corrosion. The conventional single electrode method is limited in its ability to obtain the kinetic information of the corrosion occurrence and development processes. Herein, the coating deterioration and underlying metal corrosion processes in water-line area were studied by a small wire beam electrode to monitor the current density distribution. The distance between each electrode was very small (interval: 0.3 mm), thus facilitating it to approach the practical metal component with a continuous surface. The results showed that cathodic and anodic sites tended to be weak points of the coating at the initial stage. With the continuous degradation of the coating, the cathodic zone tended to occur in the above the anodic zone due to the effect of differential aeration cells (DACs). Subsequently, the cathodic zone expanded to the waterline and the polarity reversed to the anodic zone, causing the coating to peel and blister continuously from the bottom up. When the cathodic zone extended to the gas phase area above the water line, this area became the strongest cathodic zone under the action of the thin liquid film, thus significantly accelerating the corrosion of the base metal at the bottom. The present study aims to achieve an in-depth understanding of coating deterioration and underlying metal corrosion processes in the water-line area, providing a new means of directly visualizing the role of DACs played in water line corrosion.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
Yanyu Cui ◽  
Yongxiang Qin ◽  
Dilinuer Dilimulati ◽  
Yujun Wang

The influence of chloride ion on the corrosion of metal under coating with scratch defects was researched by wire beam electrode (WBE) technology and electrochemical impedance spectroscopy (EIS) technology. The results showed that the current of metal surface could be characterized by the WBE technology. In the case of scratches on the coating, the location of the damage always showed an anodic current, and the cathodic reaction took place adjacent to the damaged location. The cathode area surrounded the defect and migrated to the far end over time. With the increase of Cl- concentration, the corrosion reaction speeded up, the rate of cathode migration also increased, and the speed of coating stripping did as well. Combined with electrochemical impedance spectroscopy, uniform laws were obtained.


Author(s):  
D. G. Chase ◽  
W. Winters ◽  
L. Piko

Although the outlines of human adenovirus entry and uncoating in HeLa cells has been clarified in recent electron microscope studies, several details remain unclear or controversial. Furthermore, morphological features of early interactions of human adenovirus with non-permissive mouse cells have not been extensively documented. In the course of studies on the effects of human adenoviruses type 5 (AD-5) and type 12 on cultured preimplantation mouse embryos we have examined virus attachment, entry and uncoating. Here we present the ultrastructural findings for AD-5.AD-5 was grown in HeLa cells and purified by successive velocity gradient and equilibrium density gradient centrifugations in CsCl. After dialysis against PBS, virus was sedimented and resuspended in embryo culture medium. Embryos were placed in culture at the 2-cell stage in Brinster's medium.


Author(s):  
A.E. Sutherland ◽  
P.G. Calarco ◽  
C.H. Damsky

Cell-extracellular matrix (ECM) interactions mediated by the integrin family of receptors are critical for morphogenesis and may also play a regulatory role in differentiation during early development. We have examined the onset of expression of individual integrin subunit proteins in the early mouse embryo, and their roles in early morphogenetic events. As detected by immunoprecipitation, the α6, αV, β1, and β3 subunits are detected as early as the 4-cell stage, α5 at the hatched blastocyst stage and αl and α3 following blastocyst attachment. We tested the role of these integrins in the attachment and migratory activity of two cell populations of the early mouse embryo: the trophoblast giant cells, which invade the uterine stroma and ultimately contribute to the chorio-allantoic placenta, and the parietal endoderm, which migrates over the inner surface of the trophoblast and ultimately forms Reichert's membrane and the parietal yolk sac. Experiments were done in serum-free medium on substrates coated with laminin (Ln) and fibronectin (Fn). Trophoblast outgrowth occurs on Ln and its E8 fragment (long arm), but not on the E1’ fragment (cross region) (Figs. 1, 2 ). This outgrowth is inhibited by anti-E8, anti-Ln, and by the anti-β1 family antiserum anti-ECMR, but not by anti-αV or the function-perturbing GoH3 antibody that recognizes the α6/β1 integrin, a major Ln (E8) receptor. This suggests that trophoblast outgrowth on Ln or E8 is mediated by a different β1 integrin such as α3/β1. Early stages of trophoblast outgrowth (up to 48 hours) on Fn are inhibited by anti-Fn and by function-perturbing anti-αV antibodies, whereas at later times outgrowth becomes insensitive to anti-αV but remains sensitive to the anti-β1 family antiserum anti-ECMr, indicating that trophoblast cells modulate their interaction with Fn during outgrowth. Trophoblast outgrowth on vitronectin (Vn) is sensitive to anti-αV antibodies throughout the 5-day period examined.


Sign in / Sign up

Export Citation Format

Share Document