scholarly journals Mechanical Properties and Diffusion Barrier Performance of CrWN Coatings Fabricated through Hybrid HiPIMS/RFMS

Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 690
Author(s):  
Li-Chun Chang ◽  
Cheng-En Wu ◽  
Tzu-Yu Ou

CrWN coatings were fabricated through a hybrid high-power impulse magnetron sputtering/radio-frequency magnetron sputtering technique. The phase structures, mechanical properties, and tribological characteristics of CrWN coatings prepared with various nitrogen flow ratios (fN2s) were investigated. The results indicated that the CrWN coatings prepared at fN2 levels of 0.1 and 0.2 exhibited a Cr2N phase, whereas the coatings prepared at fN2 levels of 0.3 and 0.4 exhibited a CrN phase. These CrWN coatings exhibited hardness values of 16.7–20.2 GPa and Young’s modulus levels of 268–296 GPa, which indicated higher mechanical properties than those of coatings with similar residual stresses prepared through conventional direct current magnetron sputtering. Face-centered cubic (fcc) Cr51W2N47 coatings with a residual stress of −0.53 GPa exhibited the highest wear and scratch resistance. Furthermore, the diffusion barrier performance of fcc CrWN films on Cu metallization was explored, and they exhibited excellent barrier characteristics up to 650 °C.

2014 ◽  
Vol 988 ◽  
pp. 130-133
Author(s):  
Zai Yu Zhang ◽  
Ma Jia Wu ◽  
Xiu Hua Chen

CoSiN film can be used as diffusion barrier layer in ULSI-Cumetallization.CoSiN/Cu/CoSiN/SiO2/Si films are prepared by magnetron sputtering technology. Four-point-probe, SGC-10,Atomic forced microscopy (AFM) are used to detect the resistivity,film thickness and surface morphology. It is investigated the barrier performance of CoSiN film for Cu metallization in sub-45nm technology. The results shows that the resistivity and the components ofCoSiN/Cu/CoSiN/SiO2/Si film do not have the obvious change after being annealing at 550°C in Ar atomosphere, and CoSiN film can keep good barrier performance for Cu line. This multi-film shows good thermal stability .


Coatings ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 263 ◽  
Author(s):  
Li-Chun Chang ◽  
Yu-Zhe Zheng ◽  
Yung-I Chen

Zr–Si–N films were fabricated through the co-deposition of high-power impulse magnetron sputtering (HiPIMS) and radio-frequency magnetron sputtering (RFMS). The mechanical properties of the films fabricated using various nitrogen flow rates and radio-frequency powers were investigated. The HiPIMS/RFMS co-sputtered Zr–Si–N films were under-stoichiometric. These films with Si content of less than 9 at.%, and N content of less than 43 at.% displayed a face-centered cubic structure. The films’ hardness and Young’s modulus exhibited an evident relationship to their compressive residual stresses. The films with 2–6 at.% Si exhibited high hardness of 33–34 GPa and high Young’s moduli of 346–373 GPa, which was accompanied with compressive residual stresses from −4.4 to −5.0 GPa.


2012 ◽  
Vol 18-19 ◽  
pp. 201-211 ◽  
Author(s):  
L. Cunha ◽  
C. Moura

Chromium nitride and silicon doped chromium nitride thin films have been deposited by r.f. reactive magnetron sputtering. The effect of processing parameters on the properties of chromium nitride films and the correspondent influence of the addition of silicon on the chromium nitride matrix in the films structure and mechanical properties have been investigated. The characterization of the coatings was performed by X-ray diffraction (XRD), and nano-indentation experiments. These studies allow analyzing the crystalline phases, crystal orientation/texture, crystallite size, mechanical properties and the relations between the characteristics of the films. The increase of the nitrogen partial pressure in the working atmosphere produces changes from a body-centered cubic (bcc) Cr structure, to hexagonal Cr2N to face-centered cubic (fcc) CrN structure, with CrN (111) preferred orientation. For the films with a dominant Cr2N phase the hardness has a relative maximum (42 GPa). The highest hardness was measured for a coating with dominant CrN phase (45 GPa) with a crystallite size around 18 nm. The addition of Si, in the films with CrN dominant phase, maintains the CrN (111) preferred orientation and produced variable changes in films hardness, depending on deposition conditions.


RSC Advances ◽  
2016 ◽  
Vol 6 (2) ◽  
pp. 844-850 ◽  
Author(s):  
Y. Meng ◽  
F. Ma ◽  
Z. X. Song ◽  
Y. H. Li ◽  
K. W. Xu

Nano-grained ZrB2 thin films are prepared by radio-frequency (rf) magnetron sputtering and, the thermal stability and the diffusion barrier performance are evaluated at elevated temperatures.


Metals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 238
Author(s):  
Sujung Son ◽  
Jongun Moon ◽  
Hyeonseok Kwon ◽  
Peyman Asghari Rad ◽  
Hidemi Kato ◽  
...  

New AlxCo50−xCu50−xMnx (x = 2.5, 10, and 15 atomic %, at%) immiscible medium-entropy alloys (IMMEAs) were designed based on the cobalt-copper binary system. Aluminum, a strong B2 phase former, was added to enhance yield strength and ultimate tensile strength, while manganese was added for additional solid solution strengthening. In this work, the microstructural evolution and mechanical properties of the designed Al-Co-Cu-Mn system are examined. The alloys exhibit phase separation into dual face-centered cubic (FCC) phases due to the miscibility gap of the cobalt-copper binary system with the formation of CoAl-rich B2 phases. The hard B2 phases significantly contribute to the strength of the alloys, whereas the dual FCC phases contribute to elongation mitigating brittle fracture. Consequently, analysis of the Al-Co-Cu-Mn B2-strengthened IMMEAs suggest that the new alloy design methodology results in a good combination of strength and ductility.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4007
Author(s):  
Qimeng Zhang ◽  
Bo Cui ◽  
Bin Sun ◽  
Xin Zhang ◽  
Zhizhong Dong ◽  
...  

The effects of rare earth element Sm on the microstructure, mechanical properties, and shape memory effect of the high temperature shape memory alloy, Cu-13.0Al-4.0Ni-xSm (x = 0, 0.2 and 0.5) (wt.%), are studied in this work. The results show that the Sm addition reduces the grain size of the Cu-13.0Al-4.0Ni alloy from millimeters to hundreds of microns. The microstructure of the Cu-13.0Al-4.0Ni-xSm alloys are composed of 18R and a face-centered cubic Sm-rich phase at room temperature. In addition, because the addition of the Sm element enhances the fine-grain strengthening effect, the mechanical properties and the shape memory effect of the Cu-13.0Al-4.0Ni alloy were greatly improved. When x = 0.5, the compressive fracture stress and the compressive fracture strain increased from 580 MPa, 10.5% to 1021 MPa, 14.8%, respectively. When the pre-strain is 10%, a reversible strain of 6.3% can be obtained for the Cu-13.0Al-4.0Ni-0.2Sm alloy.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4223
Author(s):  
Po-Sung Chen ◽  
Yu-Chin Liao ◽  
Yen-Ting Lin ◽  
Pei-Hua Tsai ◽  
Jason S. C. Jang ◽  
...  

Most high-entropy alloys and medium-entropy alloys (MEAs) possess outstanding mechanical properties. In this study, a series of lightweight nonequiatomic Al50–Ti–Cr–Mn–V MEAs with a dual phase were produced through arc melting and drop casting. These cast alloys were composed of body-centered cubic and face-centered cubic phases. The density of all investigated MEAs was less than 5 g/cm3 in order to meet energy and transportation industry requirements. The effect of each element on the microstructure evolution and mechanical properties of these MEAs was investigated. All the MEAs demonstrated outstanding compressive strength, with no fractures observed after a compressive strain of 20%. Following the fine-tuning of the alloy composition, the Al50Ti20Cr10Mn15V5 MEA exhibited the most compressive strength (~1800 MPa) and ductility (~34%). A significant improvement in the mechanical compressive properties was achieved (strength of ~2000 MPa, strain of ~40%) after annealing (at 1000 °C for 0.5 h) and oil-quenching. With its extremely high specific compressive strength (452 MPa·g/cm3) and ductility, the lightweight Al50Ti20Cr10Mn15V5 MEA demonstrates good potential for energy or transportation applications in the future.


2021 ◽  
Vol 11 (6) ◽  
pp. 2832
Author(s):  
Haibo Liu ◽  
Cunlin Xin ◽  
Lei Liu ◽  
Chunqiang Zhuang

The structural stability of high-entropy alloys (HEAs) is closely related to their mechanical properties. The precise control of the component content is a key step toward understanding their structural stability and further determining their mechanical properties. In this study, first-principle calculations were performed to investigate the effects of different contents of each component on the structural stability and mechanical properties of Co-Cr-Fe-Ni HEAs based on the supercell model. Co-Cr-Fe-Ni HEAs were constructed based on a single face-centered cubic (FCC) solid solution. Elemental components have a clear effect on their structure and performance; the Cr and Fe elements have an obvious effect on the structural stability and equilibrium lattice constant, respectively. The Ni elements have an obvious effect on stiffness. The Pugh ratios indicate that Cr and Ni addition may increase ductility, whereas Co and Fe addition may decrease it. With increasing Co and Fe contents or decreasing Cr and Ni contents, the structural stability and stiffness of Co-Cr-Fe-Ni HEAs are improved. The structural stability and mechanical properties may be related to the strength of the metallic bonding and covalent bonding inside Co-Cr-Fe-Ni HEAs, which, in turn, is determined by the change in element content. Our results provide the underlying insights needed to guide the optimization of Co-Cr-Fe-Ni HEAs with excellent mechanical properties.


Coatings ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 512 ◽  
Author(s):  
Qixiang Fan ◽  
Yangmengtian Liang ◽  
Zhenghuan Wu ◽  
Yanmei Liu ◽  
Tiegang Wang

Four CrAlSiN coatings with different Al contents were prepared by varying Al sputtering power using a combined method of high power impulse magnetron sputtering (HiPIMS) and direct current magnetron sputtering (DCMS). Microstructure, chemical compositions and mechanical properties of the four coatings were characterized by XRD, XPS, SEM, TEM, nano-indentation etc. Results showed that the four coatings possessed face-centered cubic (fcc) CrN phase with Al and part of Si dissolved in it. Another part of Si existed as amorphous phase in the coatings. All the four coatings had columnar structure and formed in epitaxy growth by template effect. With increasing Al sputtering power, the Al content increased from 11.4 to 17.6 at.% gradually, while the Cr content decreased a little. The hardness of the CrAlSiN coatings increased initially probably due to the refinement of the coating grain size, while it decreased afterwards mainly caused by the aggregation of small particles leading to rougher surface and defects formed in the coatings. The elastic modulus and adhesive strength possessed the same variation tendency as the hardness versus Al sputtering power. The CrAlSiN coating with Al sputtering power of about 0.8 kW had the highest hardness of about 26.7 GPa and adhesive strength of about 27.2 N.


Vacuum ◽  
2010 ◽  
Vol 84 (11) ◽  
pp. 1270-1274 ◽  
Author(s):  
Wang Qingxiang ◽  
Liang Shuhua ◽  
Wang Xianhui ◽  
Fan Zhikang

Sign in / Sign up

Export Citation Format

Share Document