scholarly journals A Facile Nitriding Approach for Improved Impact Wear of Martensitic Cold-Work Steel Using H2/N2 Mixture Gas in an AC Pulsed Atmospheric Plasma Jet

Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1119
Author(s):  
Jhao-Yu Guo ◽  
Yu-Lin Kuo ◽  
Hsien-Po Wang

In this study, we propose a rapid plasma-assisted nitriding process using H2/N2 mixture gas in an atmospheric pressure plasma jet (APPJ) system to treat the surface of SKD11 cold-working steel in order to increase its surface hardness. The generated NH radicals in the plasma region are used to implement an ion-bombardment for nitriding the tempered martensite structure of SKD11 within 18 min to form the functional nitride layer with an increased microhardness around 1095 HV0.3. Higher ratios of H/E and H3/E2 were obtained for the values of 4.514 × 10−2 and 2.244 × 10−2, referring to a higher deformation resistance as compared with the pristine sample. After multi-cycling impact tests, smaller and shallower impact craters with less surface oxidation on plasma-treated SKD11 were distinctly proven to have the higher impact wear resistance. Therefore, the atmospheric pressure plasma nitriding process can enable a rapid thermochemical nitriding process to form a protective layer with unique advantages that increase the deformation-resistance and impact-resistance, improving the lifetime of SKD11 tool steel as die materials.

Processes ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 1134
Author(s):  
Khattiya Srakaew ◽  
Artit Chingsungnoen ◽  
Waraporn Sutthisa ◽  
Anthika Lakhonchai ◽  
Phitsanu Poolcharuansin ◽  
...  

This work aims to develop a multihole atmospheric pressure plasma jet (APPJ) device to increase the plasma area and apply it to a continuous seed treatment system. Broccoli seed was used to study the effects of an atmospheric pressure plasma jet on seed germination and growth rate. An argon flow rate of 4.2 lpm, a plasma power of 412 W, and discharge frequency of 76 kHz were used for seed treatment. The contact angle decreased strongly with the increase in treatment time from 20 s to 80 s. The broccoli seed’s outer surface morphology seemed to have been slightly modified to a smoother surface by the plasma treatment during the treatment time of 80 s. However, the cross-sectional images resulted from Synchrotron radiation X-ray tomographic microscopy (SRXTM) confirmed no significant difference between seeds untreated and treated by plasma for 80 s. This result indicates that plasma does not affect the bulk characteristics of the seed but does provide delicate changes to the top thin layer on the seed surface. After seven days of cultivation, the seed treated by plasma for 30 s achieved the highest germination and yield.


2011 ◽  
Vol 291-294 ◽  
pp. 2995-2998
Author(s):  
Yan Fu Zhang ◽  
Bo Wang ◽  
Shen Dong

Optics with free form surface can be achieve special imaging effects and reduce component amounts in optical systems. However, it is difficulty to fabricate high accuracy, damage-free optical surface with free form surfaces by conventional method. Atmospheric plasma machining is a non-contact chemical processing method which can fabricate optics without damaged layer. Numerical controlled atmospheric pressure plasma machining (NC-APPM) method is proposed to machine optical free form surfaces. A new atmospheric pressure plasma jet generator was designed to get Gaussian rotational symmetry removal spot and the spot maximum diameter is 1.5mm. Base on dwelling time algorithm, a sinusoidal wave structure, the pitch 2mm and the amplitude 500 nm, is fabricated on a pre-polished flat silica quartz surface using three-axis numerically controlled machine made by ourselves. The result shows that the amplitude error is 59 nm compare to the expectation value surfaces using numerical controlled atmospheric plasma machining method.


Micromachines ◽  
2021 ◽  
Vol 12 (6) ◽  
pp. 683
Author(s):  
Huiliang Jin ◽  
Caixue Tang ◽  
Haibo Li ◽  
Yuanhang Zhang ◽  
Yaguo Li

The continuous phase plate (CPP) is the vital diffractive optical element involved in laser beam shaping and smoothing in high-power laser systems. The high gradients, small spatial periods, and complex features make it difficult to achieve high accuracy when manufacturing such systems. A high-accuracy and high-efficiency surface topography manufacturing method for CPP is presented in this paper. The atmospheric pressure plasma jet (APPJ) system is presented and the removal characteristics are studied to obtain the optimal processing parameters. An optimized iterative algorithm based on the dwell point matrix and a fast Fourier transform (FFT) is proposed to improve the accuracy and efficiency in the dwell time calculation process. A 120 mm × 120 mm CPP surface topography with a 1326.2 nm peak-to-valley (PV) value is fabricated with four iteration steps after approximately 1.6 h of plasma processing. The residual figure error between the prescribed surface topography and plasma-processed surface topography is 28.08 nm root mean square (RMS). The far-field distribution characteristic of the plasma-fabricated surface is analyzed, for which the energy radius deviation is 11 μm at 90% encircled energy. The experimental results demonstrates the potential of the APPJ approach for the manufacturing of complex surface topographies.


2019 ◽  
Vol 675 ◽  
pp. 34-42 ◽  
Author(s):  
Md. Mokter Hossain ◽  
Quang Hung Trinh ◽  
Duc Ba Nguyen ◽  
M.S.P. Sudhakaran ◽  
Young Sun Mok

Sign in / Sign up

Export Citation Format

Share Document