scholarly journals Synthesis and Characterization of Ni–W/Cr2O3 Nanocomposite Coatings Using Electrochemical Deposition Technique

Coatings ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 815 ◽  
Author(s):  
Samuel Mbugua Nyambura ◽  
Min Kang ◽  
Jiping Zhu ◽  
Yuntong Liu ◽  
Yin Zhang ◽  
...  

Ni–W/Cr2O3 nanocomposite coatings were synthesized from aqueous sulphate-citrate electrolyte containing Cr2O3 nanoparticles on a steel surface using conventional electrodeposition technique. This study was aimed at investigating the influence of Cr2O3 nanoparticle content on the microstructure, corrosion resistance, and mechanical properties of electrodeposited Ni–W/Cr2O3 nanocomposite coatings. Ni–W binary alloy coatings were deposited and optimized before addition of the nanoparticles to produce high-quality coatings. The microstructure and chemical composition of the Ni–W/Cr2O3 nanocomposite coatings were evaluated using scanning electron microscope (SEM), energy dispersive X-ray spectrometer (EDS), and XRD. Corrosion resistance properties were evaluated using potentiodynamic polarization (Tafel) measurements in 3.5 wt.% NaCl medium. The corrosion resistance and microhardness are significantly higher in Ni–W/Cr2O3 nanocomposite coatings compared to pure Ni–W binary alloy and increase with the increase in content of Cr2O3 nanoparticles in the coatings. Wear resistance is also higher in Ni–W/Cr2O3 nanocomposite coatings.

Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2253
Author(s):  
Channagiri Mohankumar Praveen Kumar ◽  
Manjunath Patel Gowdru Chandrashekarappa ◽  
Raviraj Mahabaleshwar Kulkarni ◽  
Danil Yurievich Pimenov ◽  
Khaled Giasin

Pure Zn (Zinc) and its Zn–WO3 (Zinc–Tungsten trioxide) composite coatings were deposited on mild steel specimens by applying the electrodeposition technique. Zn–WO3 composites were prepared for the concentration of 0.5 and 1.0 g/L of particles. The influence of WO3 particles on Zn deposition, the surface morphology of composite, and texture co-efficient were analyzed using a variety of techniques, such as X-ray diffraction (XRD) and scanning electron microscopy (SEM) with Energy Dispersive X-ray analysis (EDX). Higher corrosion resistance and microhardness were observed on the Zn–WO3 composite (concentration of 1.0 g/L). The higher corrosion resistance and microhardness of 1.0 g/L Zn–WO3 nanocomposite coatings effectively protect the steel used for the manufacture of products, parts, or systems from chemical or electrochemical deterioration in industrial and marine ambient environments.


2011 ◽  
Vol 688 ◽  
pp. 217-222 ◽  
Author(s):  
Jian Jun Hao ◽  
Yan An Bai ◽  
Chong Rui Wang ◽  
Xin Yuan Liu

Ni-TiO2 nanocomposite coatings have been successfully fabricated via a route electrodeposition from nickel Watts bath containing nano-TiO2 particles, and characterized by scanning electron microscopy (SEM),X-ray diffraction(XRD), energy dispersive X-ray spectroscopy (EDS)and electrochemical techniques. The influence of preparation parameters on the properties of the coatings were investigated. The obtained results indicated that nano-TiO2 particles were distributed uniformly in the Ni matrix. It was found that the Ni-TiO2 nanocomposite coatings exhibited more excellent corrosion resistance and microhardness in comparison with pure nickel coating.


2002 ◽  
pp. 101-112 ◽  
Author(s):  
Andreas Gupper ◽  
Asunción Fernández ◽  
Christina Fernández-Ramos ◽  
Ferdinand Hofer ◽  
Christian Mitterer ◽  
...  

2011 ◽  
Vol 305 ◽  
pp. 378-383 ◽  
Author(s):  
Hong Xu ◽  
Ning Li ◽  
Wei Zeng Chen ◽  
Bao De Jing

A variety of foamed Ni-Mo alloys coatings have been obtained using pulsed electrodeposition technique. The deposit is mainly composed of amorphous structural through the X-ray diffractions (XRD), the morphology clearly contains large amounts of multi-bubble pore structure with pentagonal or hexagonal skeleton structure and obviously stratifys through scanning electron microscopy (SEM) experimentals. This pentagonal or hexagonal skeleton structure and obvious stratification has a larger surface area. The electrolysis experiments show that such foamed alloys have a low hydrogen evolution overpotential and a better corrosion resistance in 25°C, 7mol·L-1 KOH alkaline solution.


2014 ◽  
Vol 922 ◽  
pp. 761-766 ◽  
Author(s):  
Qiao Mu Tian ◽  
Hui Nan Liu

The objective of this study is to produce a uniform and consistent nanophase hydroxyapatite (nHA) and poly (lactic-co-glycolic acid) (PLGA) coating on three-dimensional magnesium (Mg) implants using electrophoretic deposition (EPD) process. Mg is biodegradable, mechanically strong, and promising for orthopedic implant and device applications. However, currently available Mg and its alloys degrade too rapidly to meet clinical needs. To control Mg degradation and promote bone ingrowth, nHA/PLGA composite microspheres were synthesized and deposited onto Mg substrates using EPD process. Annealing was applied to improve the coating adhesion. The surface morphology, composition, and coating cross-section were examined using a scanning electron microscope and energy dispersive X-ray spectrometer. The results showed the presence of calcium, phosphorous, carbon, and oxygen peaks, indicating the successful deposition of nHA/PLGA microspheres on Mg. The corrosion resistance of the coated Mg was evaluated using the Tafel test. The results showed that the nHA/PLGA composite coating improved the corrosion resistance of Mg.


Cerâmica ◽  
2003 ◽  
Vol 49 (312) ◽  
pp. 223-227 ◽  
Author(s):  
C. dos Santos ◽  
S. Ribeiro ◽  
K. Strecker ◽  
C. R. M. da Silva

Silicon nitride is a covalent ceramic material of high corrosion resistance and mechanical stability at elevated temperatures. Due to these properties, its use in metallurgical processes, such as the casting of alloys, is increasing. Therefore, the characterization of the interface between Si3N4 and the casted metal is of great importance to investigate possible interactions, which might deteriorate the ceramic mould or contaminate the metal. In this work, the use of Si3N4 as crucible material for Al-casting has been studied, by investigating the corrosion attack of liquid Al at a temperature of 1150 ºC during 30 days in air. The interface was characterized by X-ray diffraction, scanning electron microscopy and energy dispersive spectroscopy. It has been found that due to superficial oxidation two oxide layers form - SiO2 on Si3N4 and Al2O3 on Al - which effectively hinder further reactions under the conditions studied, confering high corrosion resistance to the Si3N4 crucible.


2011 ◽  
Vol 1 (3) ◽  
Author(s):  
Sharma Ankita ◽  
Ajay Singh

AbstractThis article reports on the corrosion and wear resistance of Ni-P and Ni-P-PTFE nanocomposite coatings deposited on mild steel substrates using the electroless plating technique. The coatings were characterized by scanning electron microscopy (SEM), energy dispersive analysis of X-Ray (EDAX), and X-ray diffractometry (XRD). The coatings were smooth and had thicknesses between 7 and 23 µm. They contained Ni, P, and additionally, F, in the case of the Ni-P-PTFE films. A broadening of the Ni peak in XRD was attributed to the amorphous nature and/or fine grain size of the films. Corrosion resistance was measured using immersion and electrochemical polarization tests in 3.5% NaCl solution whereas wear resistance was determined by the pin-on-disc method. Both Ni-P and Ni-P-PTFE coatings exhibited significant improvement in corrosion (in salty media) and wear behavior. Furthermore, the addition of PTFE in the coatings showed improvement in their corrosion resistance as well as a reduction in friction coefficient. Our testing revealed that the coatings’ wore out following the “adhesive type” mechanism.


Sign in / Sign up

Export Citation Format

Share Document