scholarly journals Wetting and Spreading of Commercially Available Aqueous Surfactants on Porous Materials

2019 ◽  
Vol 3 (1) ◽  
pp. 14 ◽  
Author(s):  
Phillip Johnson ◽  
Toby Routledge ◽  
Anna Trybala ◽  
Mauro Vaccaro ◽  
Victor Starov

The wetting properties of aqueous solutions of a commercially available surfactant at various concentrations on porous media are investigated using the KRUSS DSA100 shape analyzer and the ADVANCED software to process the data. Time evolution of both the contact angle and drop base diameter at each surfactant concentration after deposition were monitored. Three different porous substrates (sponges) were examined. The sponges used were a car sponge, dish sponge and audio sponge. The sponges were investigated both dry and at different degrees of saturation, that is, the amount of water absorbed into the sponge. It was found that pure distilled water droplets deposited on the dry porous media showed non-wetting. However, if droplets of surfactant solutions were deposited, then a change to a complete wetting case was found at all surfactant concentrations used. It has been observed that for all sponges, no matter the degree of saturation, they display a minimum contact angle after which the droplet is rapidly absorbed into the porous media.

1988 ◽  
Vol 58 (9) ◽  
pp. 501-506 ◽  
Author(s):  
John R. McLaughlin ◽  
Mary E. Trounson ◽  
Rex G. Stewart ◽  
A. John McKinnon

The immersion absorption of a wool carpet yarn was studied to gain a better understanding of yarn scouring processes. Upon initial immersion in nonylphenol poly(ethylene oxide) (NPEO) surfactant solutions at 50°C, yarn bundles became rapidly and almost completely saturated. After removal from the solution and squeezing, however, complete absorption on subsequent immersions in either an identical solution or distilled water was possible only when the EO chain length of the NPEO surfactant was ≥ 12. For an EO chain length of 9, complete saturation on the subsequent immersions was possible only when the surfactant concentration was <0.5 gl-1. Evidence suggests that the incomplete saturation phenomenon is caused by thin surfactant films that trap air in the yarn interior. The thin films are formed in the squeezing process following the first immersion.


NANO ◽  
2021 ◽  
Author(s):  
Weifeng Lyu ◽  
Zhaohui Zhou ◽  
Jia Huang ◽  
Kai Yan

The adsorption mechanism of the branched quaternary ammonium salt Gemini surfactant (Gemini C3) at the water-surfactant-quartz interfaces for both neutral and negatively charged quartz surfaces was studied by a molecular dynamics (MD) method. Initial and final configurations, distributions of the surfactant and its interaction with surfaces, the radial distribution function (RDF) of water molecules, and the mean square displacement (MSD) of the surfactant in bulk phase have been elucidated at the molecular level. The results showed that the adsorption of Gemini surfactants onto the hydrophilic quartz surface was driven by electrostatic interaction, which increased the hydrophobicity of the solid surface when the surfactant concentration was lower than critical micelle concentration (CMC). However, the contact angle only slightly increased since the surface tension decreased simultaneously with growing concentration. Monolayers were formed during the adsorption process of Gemini C3 molecules on the quartz surface rather than a double layer when the concentration reached the CMC, indicating a gradual transformation of an extended monolayer adsorption configuration into a more compact one. The solid-liquid interfacial tension increased with the surfactant concentration and led to a significant increase of the contact angle. The simulation results were consistent with the experiments, which further revealed the microscopic adsorption mechanism of the Gemini C3 surfactant onto the quartz surface, and provided theoretical guidance for controlling the wetting properties and surface modification of the rock.


Coatings ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 529
Author(s):  
Bangfu Wang ◽  
Juan Song

Based on the contact angle prediction model of a traditional square column structure, the prediction models for wettability of a parallelogram square column structure (PSCS) on polymethyl methacrylate (PMMA) surface prepared by femtosecond laser were established. An experiment was conducted to analyze the rationality of the established complete wetting model and incomplete wetting model. It was found that the incomplete wetting prediction model of the square column structure was more in line with the actual situation. For PSCS, the length of both the long and short sides of the boss and the width of the groove exerted an impact on the contact angle prediction results. Under the condition that the length of the long and short sides of the boss remained unchanged and the groove width increased, the contact angle increased under complete wetting and incomplete wetting. In contrast, under the condition that the long side length of the boss and the groove width remained unchanged and the short side length of the boss increased, the contact angle increased under complete wetting but decreased under incomplete wetting. The maximum contact angle reached 135.65°, indicating that PSCS on PMMA surface enhanced the surface hydrophobicity of the material.


2005 ◽  
Vol 473-474 ◽  
pp. 429-434 ◽  
Author(s):  
Olga Verezub ◽  
György Kaptay ◽  
Tomiharu Matsushita ◽  
Kusuhiro Mukai

Penetration of model solid particles (polymer, teflon, nylon, alumina) into transparent model liquids (distilled water and aqueous solutions of KI) were recorded by a high speed (500 frames per second) camera, while the particles were dropped from different heights vertically on the still surface of the liquids. In all cases a cavity has been found to form behind the solid particle, penetrating into the liquid. For each particle/liquid combination the critical dropping height has been measured, above which the particle was able to penetrate into the bulk liquid. Based on this, the critical impact particle velocity, and also the critical Weber number of penetration have been established. The critical Weber number of penetration was modelled as a function of the contact angle, particle size and the ratio of the density of solid particles to the density of the liquid.


2011 ◽  
Vol 306-307 ◽  
pp. 25-30 ◽  
Author(s):  
Ping Luo ◽  
Zhan Yun Huang ◽  
Di Hu Chen

In this work, titanium oxide nanorod arrays were fabricated by using the hydrothermal method on fluorine-doped tin oxide (FTO) coated glass. The diameter of the nanorods could be controlled from 150 nm to 30 nm by changing the growth parameters. The surface morphology and the structure of the samples were characterized by SEM and XRD. The wetting properties were identified by contact angle measurement. Platelet attachment was investigated to evaluate the blood compatibility of the samples with different nanoscale topographies. Results show that the nanotopographical surfaces perform outstanding blood compatibility, and the adhering platelet decreased with the increasing diameter of the nanorods.


1991 ◽  
Vol 226 ◽  
Author(s):  
Cynthia M. Melton ◽  
Susan M. Yarling ◽  
Carl J. Raleigh

AbstractA quantitative dynamic solder wettability mesurement technique was utilized to evaluate the effects of reflow processing on the wettability parameters associated with solder ball alloys. This technique enables the examination of the final degree of solder wetting and the continuous monitoring of wetting as a function of time during the reflow process under nitrogen atmosphere. An experimental design approach employing a 24 full factorial experiment was formulated to illustrate the use of this measurement technique investigating the final result of wetting. Solder wettability was determined with respect to the contact angle, base diameter and height of the reflowed solder ball alloy. The most significant effect estimates with respect to contact angle were solder flux and pad metallization. Solder ball alloy was found to significantly impact the base diameter and height of the reflowed solder. The effect of solder flux activators and pad metallizations on the subsequent continuous solder wettability wetting rates and amount of molten solder spread of solder ball alloys during reflow were measured. Reflow with a relatively more activated solder flux material was found to enhance the rate of solder wetting of the the pad metallization.


2003 ◽  
Vol 39 (12) ◽  
Author(s):  
J. Bachmann ◽  
S. K. Woche ◽  
M.-O. Goebel ◽  
M. B. Kirkham ◽  
R. Horton

1992 ◽  
Vol 267 ◽  
Author(s):  
Guido Biscontin ◽  
P. Maravelaki ◽  
E. Zendri ◽  
A. Glisenti

The aim of the present work is to compare the protective effect of solvent and water dispersed products on marble, Lecce and Istria stones. This choice is justified by the need of products effective also from the ecological and toxicological point of view. To obtain these informations two tests have been chosen: contact angle and water absorption. The contact angle may, in theory, be considered a measure of the water repellency, since complete wetting implies a contact angle of 0° and absolutely no wetting an angle of 180°. This does not apply to the water absorption by capillarity test because the absorption variation may be caused by either the water repellency action of the treatments or by the pore filling. However this test may give practical information about the general effect of the treatments. Moreover, the effect of treatments on permeability was investigated by vapour permeability test. Protective effect was studied after application of the products and at various stages of artificial weathering.


Sign in / Sign up

Export Citation Format

Share Document