scholarly journals Nanocomposite Inks Based on Nickel–Silver Core–Shell and Silver Nanoparticles for Fabrication Conductive Coatings at Low-Temperature Sintering

2021 ◽  
Vol 5 (1) ◽  
pp. 15
Author(s):  
Anna Pajor-Świerzy ◽  
Franciszek Szendera ◽  
Radosław Pawłowski ◽  
Krzysztof Szczepanowicz

Nanocomposite inks composed of nickel–silver core–shell and silver nanoparticles (NPs) can combine the advantages of lower cost, high conductivity, and low-temperature sintering processes, which have attracted much attention in the development of materials for printed flexible electronics. In this context, in the present paper, we report the process of preparation of nanocomposite ink containing nickel–silver core–shell nanoparticles, as the main filler, and silver nanoparticles, as doping material, and their application for the fabrication of conductive coatings. It was found that the addition of a low concentration of Ag NPs to ink formulation based mainly on low-cost Ni-Ag NPs improves the conductive properties of coatings fabricated by ink deposition on a glass substrate. Two types of prepared nanocomposite ink coatings showed promising properties for future application: (1) doped with 0.5% of Ag NPs sintered at 200 °C as low cost for larger industrial application and, (2) containing 1% of Ag NPs sintered at 150 °C for the fabrication of conductive printed patterns on flexible substrates. The conductivity of such nanocomposite films was similar, about of 6 × 106 S/m, which corresponds to 35% of that for a bulk nickel.

Materials ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 305
Author(s):  
Anna Pajor-Świerzy ◽  
Radosław Pawłowski ◽  
Piotr Sobik ◽  
Alexander Kamyshny ◽  
Krzysztof Szczepanowicz

Low-cost metallic nanoink based on nickel–silver core–shell nanoparticles (Ni@Ag NPs) was used for the formation of conductive metallic coatings with low sintering temperature, which can be successfully applied for replacement of currently used silver-based nanoinks in printed electronics. The effect of oxalic acid (OA) on the sintering temperature and conductivity of coatings formed by Ni@Ag NPs was evaluated. It was found that the addition of OA to the ink formulation and post-printing treatment of deposited films with this acid provided a noticeable decrease in the sintering temperature required for obtaining conductive patterns that is especially important for utilizing the polymeric substrates. The obtained resistivity of metallic coatings after sintering at temperature as low as 100 °C was found to be 30 µΩ·cm, only ~4 times higher compared to the resistivity of bulk Ni that is promising for future application of such materials for fabrication of low-cost flexible printed patterns.


Nanomaterials ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1007
Author(s):  
Azam Ali ◽  
Mariyam Sattar ◽  
Fiaz Hussain ◽  
Muhammad Humble Khalid Tareen ◽  
Jiri Militky ◽  
...  

The versatile one-pot green synthesis of a highly concentrated and stable colloidal dispersion of silver nanoparticles (Ag NPs) was carried out using the self-assembled tannic acid without using any other hazardous chemicals. Tannic acid (Plant-based polyphenol) was used as a reducing and stabilizing agent for silver nitrate in a mild alkaline condition. The synthesized Ag NPs were characterized for their concentration, capping, size distribution, and shape. The experimental results confirmed the successful synthesis of nearly spherical and highly concentrated (2281 ppm) Ag NPs, capped with poly-tannic acid (Ag NPs-PTA). The average particle size of Ag NPs-PTA was found to be 9.90 ± 1.60 nm. The colloidal dispersion of synthesized nanoparticles was observed to be stable for more than 15 months in the ambient environment (25 °C, 65% relative humidity). The synthesized AgNPs-PTA showed an effective antimicrobial activity against Staphylococcus Aureus (ZOI 3.0 mM) and Escherichia coli (ZOI 3.5 mM). Ag NPs-PTA also exhibited enhanced catalytic properties. It reduces 4-nitrophenol into 4-aminophenol in the presence of NaBH4 with a normalized rate constant (Knor = K/m) of 615.04 mL·s−1·mg−1. For comparison, bare Ag NPs show catalytic activity with a normalized rate constant of 139.78 mL·s−1·mg−1. Furthermore, AgNPs-PTA were stable for more than 15 months under ambient conditions. The ultra-high catalytic and good antimicrobial properties can be attributed to the fine size and good aqueous stability of Ag NPs-PTA. The unique core-shell structure and ease of synthesis render the synthesized nanoparticles superior to others, with potential for large-scale applications, especially in the field of catalysis and medical.


2015 ◽  
Vol 10 (17) ◽  
pp. 1347-1356 ◽  
Author(s):  
Jun Jie Jing ◽  
Jimin Xie ◽  
Gao Yuan Chen ◽  
Wen Hua Li ◽  
Ming Mei Zhang

2019 ◽  
Vol 48 (5) ◽  
pp. 431-438 ◽  
Author(s):  
Margarita Ivanovna Skiba ◽  
Viktoria Vorobyova

Purpose This paper aims to propose a simple, eco-friendly method for obtaining colloidal solutions of silver nanoparticles (Ag NPs) by using of contact non-equilibrium low-temperature plasma in presents polysorbate-80 and to assess their antibacterial activity in composite materials (beads) for water treatment process. Design/methodology/approach Silver nanoparticles were prepared in aqueous AgNO3 solution by using of contact non-equilibrium low-temperature plasma in the present of nonionic surfactant polysorbate-80 (Tween 80) as capping agent. Ultraviolet–visible (UV) spectroscopy, X-ray diffraction and zeta potential analysis were used to study the formation and properties of silver nanoparticles. Findings The formation of silver colloidal solutions in the presence of capping agent under plasma discharge is characterized by the presence of peak λmax = 380 – 402 nm in the spectra. The addition of sodium alginate into the reaction mixture allows synthesizing stable colloidal silver solutions. The average size of formed silver particles is up to 50 nm. Ag NPs exhibited an excellent bactericidal activity against both gram-positive and gram- negative bacteria. Composite beads prepared using nonionic surfactant were found to be effective in disinfecting the Staphylococcus aureus to different extents. Research limitations/implications Further studies are necessary for confirmation of the practical application, especially of the toxicity of Ag NPs, as well as the sorption properties of the alginate beads with Ag NPs. Practical implications The method provides a simple and practical solution to improving the synthesis of colloidal solutions of Ag NPs for water treatment process. Originality/value Contact nonequilibrium low-temperature plasma can be used as an effective technique for synthesis of nanomaterials.


2015 ◽  
Vol 17 (33) ◽  
pp. 21243-21253 ◽  
Author(s):  
Fwu-Long Mi ◽  
Shao-Jung Wu ◽  
Wen-Qi Zhong ◽  
Cheng-Yu Huang

A dual-functional sensor based on silver nanoparticles was synthesized by a two-stage procedure consisting of a low-temperature chitosan–Ag+ complexation followed by a high-temperature reduction of the complex to form chitosan-capped silver nanoparticles (CS-capped Ag NPs).


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Qiu Xiliang ◽  
Cao Yang ◽  
Lin Tiesong ◽  
He Peng ◽  
Wang Jun ◽  
...  

Silver nanoparticles with average diameter of 22.4 nm were prepared by aqueous reduction method for low-temperature sintering bonding application. The reaction temperature and PVP concentration, which are the influential factors of nanoparticle characteristics, were investigated during reduction process. In our research, monodispersity of nanoparticles was remarkably improved while unfavorable agglomeration was avoided with the AgNO3/PVP mass ratio of 1 : 4 at the reaction temperature 30°C. Besides, copper pads were successfully bonded using sintering paste employing fresh silver nanoparticles with diameter of 20~35 nm at 200°C. In addition, after morphology of the bonding joint was analysed by scanning electron microscope (SEM), the porous sintering characteristics were confirmed.


2014 ◽  
Vol 13 (01) ◽  
pp. 1450008 ◽  
Author(s):  
R. Soleyman ◽  
A. Pourjavadi ◽  
N. Masoud ◽  
A. Varamesh

In the current study, γ- Fe 2 O 3/ SiO 2/ PCA / Ag -NPs hybrid nanomaterials were successfully synthesized and characterized. At first, prepared γ- Fe 2 O 3 core nanoparticles were modified by SiO 2 layer. Then they were covered by poly citric acid (PCA) via melting esterification method as well. PCA shell acts as an effective linker, and provides vacancies for conveying drugs. Moreover, this shell as an effective capping agent directs synthesis of silver nanoparticles ( Ag -NPs) via in situ photo-reduction of silver ions by sunlight-UV irradiation. This system has several benefits as a suitable cancer therapy nanomaterial. Magnetic nanoparticles (MNPs) can guide Ag -NPs and drugs to cancer cells and then Ag -NPs can affect those cells via Ag -NPs anti-angiogenesis effect. Size and structure of the prepared magnetic hybrid nanomaterials were characterized using FTIR and UV-Vis spectra, AFM and TEM pictures and XRD data.


2021 ◽  
Author(s):  
SELCAN KARAKUŞ ◽  
Nevin Taşaltın ◽  
Cihat Taşaltın ◽  
Nuray Bekoz Üllen

Abstract Green and low-cost synthesis strategy for ultrasonic preparation of polymer blend matrix based silver nanoparticles (Ag NPs) and the development of rapid and high sensitive detection route have a great attention in biomedical applications. Therefore, in this study, we investigated the hydrogen peroxide detection performance of Konjac gum (KG)/PEG-Ag NPs. The KG/PEG-Ag NPs was synthesized via an ultrasonic process and characterized by different techniques such as ultraviolet–visible spectroscopy (UV–Vis), Fourier-Transform Infrared spectroscopy (FT-IR), Scanning Electron Microscope (SEM) and Energy Dispersive X-ray spectroscopy (EDX). Furthermore, we determined the experimental optimization on the effect of the rheological parameters of nanostructure with the highest correlation constant (R 2 : 0.989-0.996), and the intrinsic viscosity (14.71-26.77 dl/g). To provide the miscible polymer blends and homogeneous dispersion of the nanostructure, we compared the rheological parameters with the experimental results. The response time was less than 5 s and the lower limit of detection was 0.071 μM. This novel highly sensitive, rapid, and naked-eye colorimetric biosensor based Ag NPs which are prepared ultrasonic manufacturing approach, opens up a green approach of development facile and rapid detection of hydrogen peroxide in practical biomedical applications.


Sign in / Sign up

Export Citation Format

Share Document