scholarly journals Characterisation and Life Cycle Assessment of Pervious Concrete with Recycled Concrete Aggregates

Crystals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 209
Author(s):  
Adilson C. Paula Junior ◽  
Cláudia Jacinto ◽  
Thaís M. Oliveira ◽  
Antonio E. Polisseni ◽  
Fabio M. Brum ◽  
...  

The search for environmental preservation and conservation of natural resources gives rise to new concepts and viable technical solutions on the path to sustainable development. In this context, this study’s main objective is to analyse the influence of recycled concrete aggregates (RCAs) on the development of pervious concrete, whose use as a floor covering represents an excellent device to mitigate the urban soil sealing phenomena. For this, mechanical and hydraulic tests were carried out, in addition to microstructural analyses and the assessment of its environmental performance. The results obtained were compared to reference studies also involving the incorporation of recycled aggregates. A pilot-scale case study was conducted, involving a parking space lined with pervious concrete moulded “in situ”. In laboratory tests, permeability coefficients and mechanical strengths compatible with the literature and above the normative limit for light traffic were found. The case study demonstrated higher permeability than in the laboratory, but the flexural strength was lower, being indicated only for pedestrian traffic. The environmental assessment showed that the RCA represents a positive contribution to the environmental performance of pervious concrete. Still, attention should be given to the recycled aggregate transport distance between the concrete plant and the RCA treatment plant.

2021 ◽  
Vol 13 (11) ◽  
pp. 6277
Author(s):  
Ibrahim Sharaky ◽  
Usama Issa ◽  
Mamdooh Alwetaishi ◽  
Ahmed Abdelhafiz ◽  
Amal Shamseldin ◽  
...  

In this study, the recycled concrete aggregates and powder (RCA and RCP) prepared from basaltic concrete waste were used to replace the natural aggregate (NA) and cement, respectively. The NA (coarse and fine) was replaced by the recycled aggregates with five percentages (0%, 20%, 40%, 60% and 80%). Consequently, the cement was replaced by the RCP with four percentages (0%, 5%, 10% and 20%). Cubes with 100 mm edge length were prepared for all tests. The compressive and tensile strengths (fcu and ftu) and water absorption (WA) were investigated for all mixes at different ages. Partial substitution of NA with recycled aggregate reduced the compressive strength with different percentages depending on the type and source of recycled aggregate. After 28 days, the maximum reduction in fcu value was 9.8% and 9.4% for mixtures with coarse RCA and fine RCA (FRCA), respectively. After 56 days, the mixes with 40% FRCA reached almost the same fcu value as the control mix (M0, 99.5%). Consequently, the compressive strengths of the mixes with 10% RCA at 28 and 56 days were 99.3 and 95.2%, respectively, compared to those of M0. The mixes integrated FRCA and RCP showed higher tensile strengths than the M0 at 56 d with a very small reduction at 28 d (max = 3.4%). Moreover, the fcu and ftu values increased for the late test ages, while the WA decreased.


2005 ◽  
Vol 2 (2) ◽  
pp. 49
Author(s):  
Ahmad Ruslan Mohd Ridzuan ◽  
Azmi Ibrahim ◽  
Abdul Manaff Mohd Ismail

The effects of using crushed waste concrete as course aggregates upon compressive strength and carbonation were investigated. Waste concrete cubes, which had been tested for compressive strength in compliance with construction specification, were crushed and utilized as coarse recycled aggregates in new concrete. It is important to mention that, in order to simulate the real life conditions, waste concrete with very minimal information about its originality was used in its natural moisture condition. Tests on the aggregates showed that the recycled concrete aggregates have lower specific gravity and bulk density but have higher water absorption capacity than the natural aggregates. The resistance to mechanical actions such as impact and crushing for recycled concrete aggregates is also lower. Concrete mixes with design strength of 30 N/mm2, 35 N/mm2 and 40 N/mm2 were prepared using this recycled aggregates as coarse aggregates and tested. From the strength point of view the recycled aggregate concrete compared well with natural aggregate concrete. Therefore, it could be considered for various potential applications. With respect to resistance to carbonation the recycled aggregate concrete shows comparable performance.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Hisham Qasrawi ◽  
Iqbal Marie

The effect of using recycled concrete aggregates (RCA) on the basic properties of normal concrete is studied. First, recycled aggregate properties have been determined and compared to those of normal aggregates. Except for absorption, there was not a significant difference between the two. Later, recycled aggregates were introduced in concrete mixes. In these mixes, natural coarse aggregate was partly or totally replaced by recycled aggregates. Results show that the use of recycled aggregates has an adverse effect on the workability and air content of fresh concrete. Depending on the water/cement ratio and on the percent of the normal aggregate replaced by RCA, the concrete strength is reduced by 5% to 25%, while the tensile strength is reduced by 4% to 14%. All results are compared with previous research. As new in this research, the paper introduces a simple formula for the prediction of the modulus of elasticity of RCA concrete. Furthermore, the paper shows the variation of the air content of RAC.


2018 ◽  
Vol 7 (3.12) ◽  
pp. 403
Author(s):  
Naveen Kumar N ◽  
Parthiban Kathirvel ◽  
Murali G ◽  
Saravana Raja Mohan Kaliyaperumal

Recycled concrete aggregates have inferior qualities compared with the natural aggregates, mainly attributed due to the porous nature of the attached cement mortar. In previous researches treatment of recycled aggregates are done using concentrated nitric acid, hydrochloric acid and sulphuric acid but they showed less view on acetic acid which is eco-friendly and also removes more adhered mortar in the recycled aggregates. The aim of this investigation is to determine the strength characteristics of Recycled Concrete Aggregates(RCA) which have been treated using low concentration acetic acid solution (1% solution and with immersion duration of 1 and 3 days).  The treated aggregates are tested for compressive strength, split tensile strength, water absorption, impact strength and bond strength for a curing period of about 7 and 28 days.


2016 ◽  
Vol 847 ◽  
pp. 553-558 ◽  
Author(s):  
Marc Antonio Liotta ◽  
Marco Viviani ◽  
Carlotta Rodriquez

A large number of tests has been carried out in the last 15 years all around the world to study the possibility to use recycled concrete aggregates (RCA) to produce structural concrete.Earlier tests indicated that RCA concrete had lower properties in comparison to ordinary concrete, such as lower elastic modulus, a more brittle post-elastic behavior, lower workability, higher shrinkage and creep.Most of these issues have been addressed to the content of cement mortar remaining in adhesion to the aggregate after the recycling processes and that cannot be totally eliminated without high economic and ecological costs. This cement mortar which has undergone the crushing process creates zones of weakness in the RCA, causes higher water absorption, higher concrete porosity and causes the decay of the aforementioned properties.More recent tests prove that Recycled Concrete shows this peculiar problems only with a percentage of substitution of standard aggregates with RCA higher than 30%. Under this percentage recycled aggregate concrete (RAC) can be considered as a standard concrete, on condition that an appropriate mix design is performed.


Materials ◽  
2020 ◽  
Vol 13 (19) ◽  
pp. 4378
Author(s):  
Ana Elisabete Paganelli Guimarães de Avila Jacintho ◽  
Ivanny Soares Gomes Cavaliere ◽  
Lia Lorena Pimentel ◽  
Nádia Cazarim Silva Forti

This paper presents a study with concretes produced with natural aggregates, recycled concrete aggregates (RCA) and waste porcelain aggregates (WPA). The study analyzed the influence of recycled aggregates in the mechanical properties of conventional concretes and evaluated the difference between measured and predicted values of elasticity modulus. The incorporation of WPA in concrete showed better mechanical results compared to the concretes produced with RCA. Measured elasticity moduli were lower than moduli predicted by NBR 6118:2014 and fib Model Code 2010, while measured results were greater than values predicted by Eurocode 2:2004 and ACI 318:2014, as expected, which indicated the safety of the latter two standards.


2018 ◽  
Vol 8 (11) ◽  
pp. 2149 ◽  
Author(s):  
Eleftherios Anastasiou ◽  
Michail Papachristoforou ◽  
Dimitrios Anesiadis ◽  
Konstantinos Zafeiridis ◽  
Eirini-Chrysanthi Tsardaka

The waste produced from ready-mixed concrete (RMC) industries poses an environmental challenge regarding recycling. Three different waste products form RMC plants were investigated for use as recycled aggregates in construction applications. Crushed hardened concrete from test specimens of at least 40 MPa compressive strength (HR) and crushed hardened concrete from returned concrete (CR) were tested for their suitability as concrete aggregates and then used as fine and coarse aggregate in new concrete mixtures. In addition, cement sludge fines (CSF) originating from the washing of concrete trucks were tested for their properties as filler for construction applications. Then, CSF was used at 10% and 20% replacement rates as a cement replacement for mortar production and as an additive for soil stabilization. The results show that, although there is some reduction in the properties of the resulting concrete, both HR and CR can be considered good-quality recycled aggregates, especially when the coarse fraction is used. Furthermore, HR performs considerably better than CR both as coarse and as fine aggregate. CSF seems to be a fine material with good properties as a filler, provided that it is properly crushed and sieved through a 75 μm sieve.


2014 ◽  
Vol 634 ◽  
pp. 151-162 ◽  
Author(s):  
Diogo Pedro ◽  
Jorge de Brito ◽  
Luís Evangelista

This work intends to evaluate the (mechanical and durability) performance of concrete made with coarse recycled concrete aggregates (CRCA) obtained using two crushing processes: primary crushing (PC) and primary plus secondary crushing (PSC). This analysis intends to select the most efficient production process of recycled aggregates (RA). The RA used here resulted from precast products (P), with strength classes of 20 MPa, 45 MPa and 65 MPa, and from laboratory-made concrete (L) with the same compressive strengths. The evaluation of concrete was made with the following tests: compressive strength; splitting tensile strength; modulus of elasticity; carbonation resistance; chloride penetration resistance; capillary water absorption; and water absorption by immersion. These findings contribute to a solid and innovative basis that allows the precasting industry to use without restrictions the waste it generates.


Sign in / Sign up

Export Citation Format

Share Document