scholarly journals Liquid Crystal Beam Steering Devices: Principles, Recent Advances, and Future Developments

Crystals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 292 ◽  
Author(s):  
Ziqian He ◽  
Fangwang Gou ◽  
Ran Chen ◽  
Kun Yin ◽  
Tao Zhan ◽  
...  

Continuous, wide field-of-view, high-efficiency, and fast-response beam steering devices are desirable in a plethora of applications. Liquid crystals (LCs)—soft, bi-refringent, and self-assembled materials which respond to various external stimuli—are especially promising for fulfilling these demands. In this paper, we review recent advances in LC beam steering devices. We first describe the general operation principles of LC beam steering techniques. Next, we delve into different kinds of beam steering devices, compare their pros and cons, and propose a new LC-cladding waveguide beam steerer using resistive electrodes and present our simulation results. Finally, two future development challenges are addressed: Fast response time for mid-wave infrared (MWIR) beam steering, and device hybridization for large-angle, high-efficiency, and continuous beam steering. To achieve fast response times for MWIR beam steering using a transmission-type optical phased array, we develop a low-loss polymer-network liquid crystal and characterize its electro-optical properties.

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Ziqian He ◽  
Kun Yin ◽  
Shin-Tson Wu

AbstractNon-mechanical beam steerers with lightweight, compact, high-efficiency, high-precision, and/or large-angle are pivotal for light detection and ranging (LiDAR) of autonomous vehicles, eye-tracking for near-eye displays, microscopy, optical tweezers, and high-precision three-dimensional (3D) printing. However, even the most matured optical phased array can only provide quasi-continuous, efficient beam steering within a small angle range. A telescope module with an angle magnification function can be coupled to enlarge the steering range or precision. But obtaining a compact, low-cost, lightweight, high-quality telescope module with conventional optics remains challenging. Patterned liquid crystal-based planar optical elements offer great design freedom for manipulating the phase profile of light in 2D space. Owing to the advantages of high efficiency, thinness, low cost, easy processing, flexibility, and response to environmental stimuli, a plethora of high-quality optical devices have been demonstrated. Here, a miniature planar telescope mediated by liquid crystal polymers is proposed to offer angle magnification independent of incident spatial location. It consists of two cascaded liquid crystal planar optical elements, each performing a predefined mathematical transformation. By this concept, planar optical elements are fabricated using a new exposure method and assembled into planar telescopes with different magnification factors. Within the incident field range, over 84.6% optical efficiency is achieved with small wavefront distortion. Such a miniature planar telescope shows the potential of cascaded liquid crystal planar optical elements for realizing functionalities that cannot be fulfilled by single optical elements, and enables lightweight, low loss, passive optical transmitters for widespread applications.


1996 ◽  
Vol 21 (9) ◽  
pp. 689 ◽  
Author(s):  
D. P. Resler ◽  
D. S. Hobbs ◽  
R. C. Sharp ◽  
L. J. Friedman ◽  
T. A. Dorschner

2018 ◽  
Vol 51 (38) ◽  
pp. 385103 ◽  
Author(s):  
Minghuan Liu ◽  
Zhihui Diao ◽  
Li Xuan ◽  
Zenghui Peng ◽  
Lishuang Yao ◽  
...  

2014 ◽  
Vol 34 (6) ◽  
pp. 0623001
Author(s):  
赵祥杰 Zhao Xiangjie ◽  
刘仓理 Liu Cangli ◽  
曾建成 Zeng Jiancheng ◽  
张大勇 Zhang Dayong ◽  
骆永全 Luo Yongquan

2014 ◽  
Vol 41 (2) ◽  
pp. 0202002
Author(s):  
师宇斌 Shi Yubin ◽  
马浩统 Ma Haotong ◽  
马阎星 Ma Yanxing ◽  
吕洋 Lü Yang ◽  
司磊 Si Lei

2010 ◽  
Vol 437 ◽  
pp. 344-348 ◽  
Author(s):  
Li Ying Wu ◽  
Jian Zhang ◽  
Yun Fang

For laser beam steering, a pure optical-electric system without mechanical or inertial parts is used. The new device is a Liquid Crystal Optical Phased Array (LCOPA). Supplying electric field to liquid crystal cell with electrodes, the extraordinary refractive index changes, which results in phase shift that modulates the direction of incident beam. The advantages of this device are small size, less energy consuming, programmable and addressable control. A one dimensional device is designed and tested. The resolution of the steering angle is 20 μrad, the range is ±2o. The effect of flyback region and phase valley on diffraction efficiency is also discussed briefly.


Polymers ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 2862
Author(s):  
Yannanqi Li ◽  
Zhiyong Yang ◽  
Ran Chen ◽  
Lingchao Mo ◽  
Juanli Li ◽  
...  

A submillisecond-response and light scattering-free polymer-network liquid crystal (PNLC) for infrared spatial light modulators is demonstrated. Our new liquid crystal host exhibits a higher birefringence, comparable dielectric anisotropy, and slightly lower visco-elastic constant than a commonly employed commercial material, HTG-135200. Moreover, the electro-optical performance of our PNLCs with different monomer concentrations, cell gaps, and liquid crystal (LC) hosts is compared and discussed from four aspects: operating voltage, hysteresis, relaxation time, and light scattering loss. The temperature effect on hysteresis is also analyzed. Potential applications of PNLCs for laser beam steering and spatial light modulators especially in the infrared region are foreseeable.


Sign in / Sign up

Export Citation Format

Share Document