Process Modelling of Geothermal Drilling System Using Digital Twin for Real-Time Monitoring and Control
Currently, Kenya supplies its energy demand predominantly through hydroelectric power, which fluctuates due to poor and unpredictable rainfall in particular years. Geothermal energy is proposed as a clean and reliable energy source in meeting Kenya’s increasing energy demand. During geothermal drilling operations, disruptions due to tool wear and breakages increases the cost of operation significantly. Some of these causes can be mitigated by real-time monitoring of the tool head during operations. This paper presents the design and implementation of a digital twin model of a drilling tool head, represented as a section of a mechatronic assembly system. The system was modelled in Siemens NX and programmed via the TIA portal using S7 1200 PLC. The digital model was programmed to exactly match the operations of the physical system using OPC (open platform communications) standards. These operations were verified through the motion study by simultaneous running of the assembly system and digital twin model. The study results substantiate that a digital twin model of a geothermal drilling operation can closely mimic the physical operation.