scholarly journals An Innovative Ford Sedan with Enhanced Stylistic Design Engineering (SDE) via Augmented Reality and Additive Manufacturing

Designs ◽  
2021 ◽  
Vol 5 (3) ◽  
pp. 46
Author(s):  
Leonardo Frizziero ◽  
Gian Maria Santi ◽  
Giampiero Donnici ◽  
Christian Leon-Cardenas ◽  
Patrich Ferretti ◽  
...  

The design of an E segment, executive, midsize sedan car was chosen to fill a gap in the market of the Ford brand and to achieve the goal of innovation looking towards the future. Ford has not owned an E-segment flagship sports sedan for years, since the historic 1960s Falcon. Starting from the latter assumption and considering that the major car manufacturers are currently investing heavily in E-segment cars, it is important to design a new model, which has been called the Eagle. This model proposed here is to fill the gap between Ford and other companies that are already producing sport cars for the electric sector and to complete Ford’s proposal. The presented methodology is based on SDE, on which many design tools are implemented, such as Quality Function Deployment (QFD), Benchmarking (BM), and Top Flop Analysis (TPA). A market analysis follows in order to identify the major competitors and their key characteristics considering style and technology. The results are used to design an innovative car. Based on the most developed stylistic trends, the vehicle is first sketched and then drawn in the 2D and 3D environments for prototyping. This result leads to the possibility of 3D printing the actual model as a maquette using the Fused Deposition Modelling (FDM) technology and testing it in different configurations in Augmented Reality (AR). These two final applications unveil the possibilities of Industry 4.0 as enrichment for SDE and in general rapid prototyping.

Author(s):  
Filip Gorski ◽  
Radoslaw Wichniarek ◽  
Wieslaw Kuczko ◽  
Pawel Bun ◽  
John A. Erkoyuncu

POROS ◽  
2017 ◽  
Vol 14 (2) ◽  
pp. 99
Author(s):  
Jeffrey Jeffrey ◽  
Didi Widya Utama ◽  
Gatot Soeharsono

Abstract: Fused Deposition Modelling (FDM) is a technology additive manufacture for modelling, prototyping, and production. This technology is one of the techniques used for 3D printers. Our focus is on studying, design machines fused deposition with 3D modeling and simulation with autodesk inventor and other design tools. Design is done by simulating the strength of the construction and then determine the components needed. We are making fused deposition modeling is intended as a prototype in order to understand how it works and how to innovate in the development of fused deposition modeling. The results of the design in the form of a fused depositon modeling that is able to create physical models 


2020 ◽  
Vol 14 (3) ◽  
pp. 7296-7308
Author(s):  
Siti Nur Humaira Mazlan ◽  
Aini Zuhra Abdul Kadir ◽  
N. H. A. Ngadiman ◽  
M.R. Alkahari

Fused deposition modelling (FDM) is a process of joining materials based on material entrusion technique to produce objects from 3D model using layer-by-layer technique as opposed to subtractive manufacturing. However, many challenges arise in the FDM-printed part such as warping, first layer problem and elephant food that was led to an error in dimensional accuracy of the printed parts especially for the overhanging parts. Hence, in order to investigate the manufacturability of the FDM printed part, various geometrical and manufacturing features were developed using the benchmarking artifacts. Therefore, in this study, new benchmarking artifacts containing multiple overhang lengths were proposed. After the benchmarking artifacts were developed, each of the features were inspected using 3D laser scanner to measure the dimensional accuracy and tolerances. Based on 3D scanned parts, 80% of the fabricated parts were fabricated within ±0.5 mm of dimensional accuracy as compared with the CAD data. In addition, the multiple overhang lengths were also successfully fabricated with a very significant of filament sagging observed.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2289
Author(s):  
Nishata Royan Rajendran Royan ◽  
Jie Sheng Leong ◽  
Wai Nam Chan ◽  
Jie Ren Tan ◽  
Zainon Sharmila Binti Shamsuddin

As one of the fastest-growing additive manufacturing (AM) technologies, fused deposition modelling (FDM) shows great potential in printing natural fibre-reinforced composites (NFRC). However, several challenges, such as low mechanical properties and difficulty in printing, need to be overcome. Therefore, the effort to improve the NFRC for use in AM has been accelerating in recent years. This review attempts to summarise the current approaches of using NFRC as a feeder for AM. The effects of fibre treatments, composite preparation methods and addition of compatibilizer agents were analysed and discussed. Additionally, current methods of producing feeders from NFRCs were reviewed and discussed. Mechanical property of printed part was also dependent on the printing parameters, and thus the effects of printing temperature, layer height, infill and raster angle were discussed, and the best parameters reported by other researchers were identified. Following that, an overview of the mechanical properties of these composites as reported by various researchers was provided. Next, the use of optimisation techniques for NFRCs was discussed and analysed. Lastly, the review provided a critical discussion on the overall topic, identified all research gaps present in the use of NFRC for AM processes, and to overcome future challenges.


2021 ◽  
Vol 597 ◽  
pp. 120331
Author(s):  
Juliana dos Santos ◽  
Monique Deon ◽  
Guilherme Silveira da Silva ◽  
Ruy Carlos Ruver Beck

Sign in / Sign up

Export Citation Format

Share Document