scholarly journals Pulse Coupled Neural Network-Based Multimodal Medical Image Fusion via Guided Filtering and WSEML in NSCT Domain

Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 591
Author(s):  
Liangliang Li ◽  
Hongbing Ma

Multimodal medical image fusion aims to fuse images with complementary multisource information. In this paper, we propose a novel multimodal medical image fusion method using pulse coupled neural network (PCNN) and a weighted sum of eight-neighborhood-based modified Laplacian (WSEML) integrating guided image filtering (GIF) in non-subsampled contourlet transform (NSCT) domain. Firstly, the source images are decomposed by NSCT, several low- and high-frequency sub-bands are generated. Secondly, the PCNN-based fusion rule is used to process the low-frequency components, and the GIF-WSEML fusion model is used to process the high-frequency components. Finally, the fused image is obtained by integrating the fused low- and high-frequency sub-bands. The experimental results demonstrate that the proposed method can achieve better performance in terms of multimodal medical image fusion. The proposed algorithm also has obvious advantages in objective evaluation indexes VIFF, QW, API, SD, EN and time consumption.

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Jingming Xia ◽  
Yi Lu ◽  
Ling Tan

Visual effects of medical image have a great impact on clinical assistant diagnosis. At present, medical image fusion has become a powerful means of clinical application. The traditional medical image fusion methods have the problem of poor fusion results due to the loss of detailed feature information during fusion. To deal with it, this paper proposes a new multimodal medical image fusion method based on the imaging characteristics of medical images. In the proposed method, the non-subsampled shearlet transform (NSST) decomposition is first performed on the source images to obtain high-frequency and low-frequency coefficients. The high-frequency coefficients are fused by a parameter‐adaptive pulse-coupled neural network (PAPCNN) model. The method is based on parameter adaptive and optimized connection strength β adopted to promote the performance. The low-frequency coefficients are merged by the convolutional sparse representation (CSR) model. The experimental results show that the proposed method solves the problems of difficult parameter setting and poor detail preservation of sparse representation during image fusion in traditional PCNN algorithms, and it has significant advantages in visual effect and objective indices compared with the existing mainstream fusion algorithms.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Jingming Xia ◽  
Yiming Chen ◽  
Aiyue Chen ◽  
Yicai Chen

The clinical assistant diagnosis has a high requirement for the visual effect of medical images. However, the low frequency subband coefficients obtained by the NSCT decomposition are not sparse, which is not conducive to maintaining the details of the source image. To solve these problems, a medical image fusion algorithm combined with sparse representation and pulse coupling neural network is proposed. First, the source image is decomposed into low and high frequency subband coefficients by NSCT transform. Secondly, the K singular value decomposition (K-SVD) method is used to train the low frequency subband coefficients to get the overcomplete dictionary D, and the orthogonal matching pursuit (OMP) algorithm is used to sparse the low frequency subband coefficients to complete the fusion of the low frequency subband sparse coefficients. Then, the pulse coupling neural network (PCNN) is excited by the spatial frequency of the high frequency subband coefficients, and the fusion coefficients of the high frequency subband coefficients are selected according to the number of ignition times. Finally, the fusion medical image is reconstructed by NSCT inverter. The experimental results and analysis show that the algorithm of gray and color image fusion is about 34% and 10% higher than the contrast algorithm in the edge information transfer factor QAB/F index, and the performance of the fusion result is better than the existing algorithm.


Author(s):  
Mummadi Gowthami Reddy ◽  
Palagiri Veera Narayana Reddy ◽  
Patil Ramana Reddy

In the current era of technological development, medical imaging plays an important role in many applications of medical diagnosis and therapy. In this regard, medical image fusion could be a powerful tool to combine multi-modal images by using image processing techniques. But, conventional approaches failed to provide the effective image quality assessments and robustness of fused image. To overcome these drawbacks, in this work three-stage multiscale decomposition (TSMSD) using pulse-coupled neural networks with adaptive arguments (PCNN-AA) approach is proposed for multi-modal medical image fusion. Initially, nonsubsampled shearlet transform (NSST) is applied onto the source images to decompose them into low frequency and high frequency bands. Then, low frequency bands of both the source images are fused using nonlinear anisotropic filtering with discrete Karhunen–Loeve transform (NLAF-DKLT) methodology. Next, high frequency bands obtained from NSST are fused using PCNN-AA approach. Now, fused low frequency and high frequency bands are reconstructed using NSST reconstruction. Finally, band fusion rule algorithm with pyramid reconstruction is applied to get final fused medical image. Extensive simulation outcome discloses the superiority of proposed TSMSD using PCNN-AA approach as compared to state-of-the-art medical image fusion methods in terms of fusion quality metrics such as entropy (E), mutual information (MI), mean (M), standard deviation (STD), correlation coefficient (CC) and computational complexity.


Sign in / Sign up

Export Citation Format

Share Document