pulse coupled neural network
Recently Published Documents


TOTAL DOCUMENTS

370
(FIVE YEARS 66)

H-INDEX

25
(FIVE YEARS 5)

2021 ◽  
Vol 32 (8) ◽  
Author(s):  
Hao-Ran Liu ◽  
Yu-Xin Cheng ◽  
Zhuo Zuo ◽  
Tian-Tian Sun ◽  
Kai-Min Wang

2021 ◽  
Vol 2021 ◽  
pp. 1-8
Author(s):  
Fu Ying ◽  
Shuhua Chen ◽  
Guojun Pan ◽  
Zemin He

The objective of this study was to explore the diagnosis of severe sepsis complicated with acute kidney injury (AKI) by ultrasonic image information based on the artificial intelligence pulse coupled neural network (PCNN) algorithm. In this study, an algorithm of ultrasonic image information enhancement based on the artificial intelligence PCNN was constructed and compared with the histogram equalization algorithm and linear transformation algorithm. After that, it was applied to the ultrasonic image diagnosis of 20 cases of severe sepsis combined with AKI in hospital. The condition of each patient was diagnosed by ultrasound image performance, change of renal resistance index (RRI), ultrasound score, and receiver operator characteristic curve (ROC) analysis. It was found that the histogram distribution of this algorithm was relatively uniform, and the information of each gray level was obviously retained and enhanced, which had the best effect in this algorithm; there was a marked individual difference in the values of RRI. Overall, the values of RRI showed a slight upward trend after admission to the intensive care unit (ICU). The RRI was taken as the dependent variable, time as the fixed-effect model, and patients as the random effect; the parameter value of time was between 0.012 and 0.015, p = 0.000 < 0.05 . Besides, there was no huge difference in the ultrasonic score among different time measurements (t = 1.348 and p = 0.128 > 0.05 ). The area under the ROC curve of the RRI for the diagnosis of AKI at the 2nd day, 4th day, and 6th day was 0.758, 0.841, and 0.856, respectively, which was all greater than 0.5 ( p < 0.05 ). In conclusion, the proposed algorithm in this study could significantly enhance the amount of information in ultrasound images. In addition, the change of RRI values measured by ultrasound images based on the artificial intelligence PCNN was associated with AKI.


Entropy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. 591
Author(s):  
Liangliang Li ◽  
Hongbing Ma

Multimodal medical image fusion aims to fuse images with complementary multisource information. In this paper, we propose a novel multimodal medical image fusion method using pulse coupled neural network (PCNN) and a weighted sum of eight-neighborhood-based modified Laplacian (WSEML) integrating guided image filtering (GIF) in non-subsampled contourlet transform (NSCT) domain. Firstly, the source images are decomposed by NSCT, several low- and high-frequency sub-bands are generated. Secondly, the PCNN-based fusion rule is used to process the low-frequency components, and the GIF-WSEML fusion model is used to process the high-frequency components. Finally, the fused image is obtained by integrating the fused low- and high-frequency sub-bands. The experimental results demonstrate that the proposed method can achieve better performance in terms of multimodal medical image fusion. The proposed algorithm also has obvious advantages in objective evaluation indexes VIFF, QW, API, SD, EN and time consumption.


Sign in / Sign up

Export Citation Format

Share Document