scholarly journals Permutation Entropy-Based Interpretability of Convolutional Neural Network Models for Interictal EEG Discrimination of Subjects with Epileptic Seizures vs. Psychogenic Non-Epileptic Seizures

Entropy ◽  
2022 ◽  
Vol 24 (1) ◽  
pp. 102
Author(s):  
Michele Lo Giudice ◽  
Giuseppe Varone ◽  
Cosimo Ieracitano ◽  
Nadia Mammone ◽  
Giovanbattista Gaspare Tripodi ◽  
...  

The differential diagnosis of epileptic seizures (ES) and psychogenic non-epileptic seizures (PNES) may be difficult, due to the lack of distinctive clinical features. The interictal electroencephalographic (EEG) signal may also be normal in patients with ES. Innovative diagnostic tools that exploit non-linear EEG analysis and deep learning (DL) could provide important support to physicians for clinical diagnosis. In this work, 18 patients with new-onset ES (12 males, 6 females) and 18 patients with video-recorded PNES (2 males, 16 females) with normal interictal EEG at visual inspection were enrolled. None of them was taking psychotropic drugs. A convolutional neural network (CNN) scheme using DL classification was designed to classify the two categories of subjects (ES vs. PNES). The proposed architecture performs an EEG time-frequency transformation and a classification step with a CNN. The CNN was able to classify the EEG recordings of subjects with ES vs. subjects with PNES with 94.4% accuracy. CNN provided high performance in the assigned binary classification when compared to standard learning algorithms (multi-layer perceptron, support vector machine, linear discriminant analysis and quadratic discriminant analysis). In order to interpret how the CNN achieved this performance, information theoretical analysis was carried out. Specifically, the permutation entropy (PE) of the feature maps was evaluated and compared in the two classes. The achieved results, although preliminary, encourage the use of these innovative techniques to support neurologists in early diagnoses.

2021 ◽  
pp. 1-13
Author(s):  
R. Bhuvaneswari ◽  
S. Ganesh Vaidyanathan

Diabetic Retinopathy (DR) is one of the most common diabetic diseases that affect the retina’s blood vessels. Too much of the glucose level in blood leads to blockage of blood vessels in the retina, weakening and damaging the retina. Automatic classification of diabetic retinopathy is a challenging task in medical research. This work proposes a Mixture of Ensemble Classifiers (MEC) to classify and grade diabetic retinopathy images using hierarchical features. We use an ensemble of classifiers such as support vector machine, random forest, and Adaboost classifiers that use the hierarchical feature maps obtained at every pooling layer of a convolutional neural network (CNN) for training. The feature maps are generated by applying the filters to the output of the previous layer. Lastly, we predict the class label or the grade for the given test diabetic retinopathy image by considering the class labels of all the ensembled classifiers. We have tested our approaches on the E-ophtha dataset for the classification task and the Messidor dataset for the grading task. We achieved an accuracy of 95.8% and 96.2% for the E-ophtha and Messidor datasets, respectively. A comparison among prominent convolutional neural network architectures and the proposed approach is provided.


2017 ◽  
Author(s):  
Evangelia I Zacharaki

Background. The availability of large databases containing high resolution three-dimensional (3D) models of proteins in conjunction with functional annotation allows the exploitation of advanced supervised machine learning techniques for automatic protein function prediction. Methods. In this work, novel shape features are extracted representing protein structure in the form of local (per amino acid) distribution of angles and amino acid distances, respectively. Each of the multi-channel feature maps is introduced into a deep convolutional neural network (CNN) for function prediction and the outputs are fused through Support Vector Machines (SVM) or a correlation-based k-nearest neighbor classifier. Two different architectures are investigated employing either one CNN per multi-channel feature set, or one CNN per image channel. Results. Cross validation experiments on enzymes (n = 44,661) from the PDB database achieved 90.1% correct classification demonstrating the effectiveness of the proposed method for automatic function annotation of protein structures. Discussion. The automatic prediction of protein function can provide quick annotations on extensive datasets opening the path for relevant applications, such as pharmacological target identification.


2020 ◽  
Vol 14 ◽  
Author(s):  
Gaowei Xu ◽  
Tianhe Ren ◽  
Yu Chen ◽  
Wenliang Che

Frequent epileptic seizures cause damage to the human brain, resulting in memory impairment, mental decline, and so on. Therefore, it is important to detect epileptic seizures and provide medical treatment in a timely manner. Currently, medical experts recognize epileptic seizure activity through the visual inspection of electroencephalographic (EEG) signal recordings of patients based on their experience, which takes much time and effort. In view of this, this paper proposes a one-dimensional convolutional neural network-long short-term memory (1D CNN-LSTM) model for automatic recognition of epileptic seizures through EEG signal analysis. Firstly, the raw EEG signal data are pre-processed and normalized. Then, a 1D convolutional neural network (CNN) is designed to effectively extract the features of the normalized EEG sequence data. In addition, the extracted features are then processed by the LSTM layers in order to further extract the temporal features. After that, the output features are fed into several fully connected layers for final epileptic seizure recognition. The performance of the proposed 1D CNN-LSTM model is verified on the public UCI epileptic seizure recognition data set. Experiments results show that the proposed method achieves high recognition accuracies of 99.39% and 82.00% on the binary and five-class epileptic seizure recognition tasks, respectively. Comparing results with traditional machine learning methods including k-nearest neighbors, support vector machines, and decision trees, other deep learning methods including standard deep neural network and CNN further verify the superiority of the proposed method.


Seizure detection in non-stationary electroencephalography (EEG) is perplexing and difficult task. The human examination for detecting the seizure activities in EEG signals is liable to errors. Apart from the errors, it is a time driven task and also the detection is not precise. In order to detect epileptic seizures more precisely various automatic systems have been emerged to assist neurophysiologists by researchers in various attempts. There are various limitations such as time-consuming, technical artifact issues, result variation with respect to reader expertise level, abnormalities identification. Enhanced Convolutional Neural Network (ECNN) is a technique proposed to mitigate the above mentioned limitations and to categorize more accurate epileptic seizures results. A novel automatic method to sense epileptic seizures using feature extraction and detection is proposed in this research. Linear filter is helpful in reducing the noise along with artifacts when the EEG signals are preprocessed. The noise can be still removed by applying Least Mean Square algorithm. In this proposed research the features are extracted via analytic time frequency with Cascaded wavelet transform and fractal dimension (FD) in order to detect epileptic seizures. Lastly, to analyze the EEG signal for better classification performance of the given dataset, ECNN is adopted. During this research to classify normal, preictal, and seizure classes, a 13-layer deep ECNN algorithm is implemented. This research has special characteristics such that the model yields promising classification accuracy. The experimental result demonstrates that the proposed ECNN is superior in terms of higher sensitivity, specificity, accuracy and lower time complexity rather than the existing methods.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2561 ◽  
Author(s):  
Wenxin Yu ◽  
Shoudao Huang ◽  
Weihong Xiao

To investigate problems involving wind turbines that easily occur but are hard to diagnose, this paper presents a wind turbine (WT) fault diagnosis algorithm based on a spectrogram and a convolutional neural network. First, the original data are sampled into a phonetic form. Then, the data are transformed into a spectrogram in the time-frequency domain. Finally, the data are sent into a convolutional neural network (CNN) model with batch regularization for training and testing. Experimental results show that the method is suitable for training a large number of samples and has good scalability. Compared with Back Propagation Neural Network (BPNN), Support Vector Machine (SVM), Extreme Learning Machine (ELM), and other fault diagnosis methods, the average diagnostic correctness rate is higher; so, the method can provide more accurate reference information for wind turbine fault diagnosis.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Linfeng Sui ◽  
Xuyang Zhao ◽  
Qibin Zhao ◽  
Toshihisa Tanaka ◽  
Jianting Cao

Epileptic focus localization by analysing intracranial electroencephalogram (iEEG) plays a critical role in successful surgical therapy of resection of the epileptogenic lesion. However, manual analysis and classification of the iEEG signal by clinicians are arduous and time-consuming and excessively depend on the experience. Due to individual differences of patients, the iEEG signal from different patients usually shows very diverse features even if the features belong to the same class. Accordingly, automatic detection of epileptic focus is required to improve the accuracy and to shorten the time for treatment. In this paper, we propose a novel feature fusion-based iEEG classification method, a deep learning model termed Time-Frequency Hybrid Network (TF-HybridNet), in which short-time Fourier transform (STFT) and 1d convolution layers are performed on the input iEEG in parallel to extract features of the time-frequency domain and feature maps. And then, the time-frequency features and feature maps are fused and fed to a 2d convolutional neural network (CNN). We used the Bern-Barcelona iEEG dataset for evaluating the performance of TF-HybridNet, and the experimental results show that our approach is able to differentiate the focal from nonfocal iEEG signal with an average classification accuracy of 94.3% and demonstrates an improved accuracy rate compared to the model using only STFT or one-dimensional convolutional layers as feature extraction.


2017 ◽  
Author(s):  
Evangelia I Zacharaki

Background. The availability of large databases containing high resolution three-dimensional (3D) models of proteins in conjunction with functional annotation allows the exploitation of advanced supervised machine learning techniques for automatic protein function prediction. Methods. In this work, novel shape features are extracted representing protein structure in the form of local (per amino acid) distribution of angles and amino acid distances, respectively. Each of the multi-channel feature maps is introduced into a deep convolutional neural network (CNN) for function prediction and the outputs are fused through Support Vector Machines (SVM) or a correlation-based k-nearest neighbor classifier. Two different architectures are investigated employing either one CNN per multi-channel feature set, or one CNN per image channel. Results. Cross validation experiments on enzymes (n = 44,661) from the PDB database achieved 90.1% correct classification demonstrating the effectiveness of the proposed method for automatic function annotation of protein structures. Discussion. The automatic prediction of protein function can provide quick annotations on extensive datasets opening the path for relevant applications, such as pharmacological target identification.


Author(s):  
Niha Kamal Basha ◽  
Aisha Banu Wahab

: Absence seizure is a type of brain disorder in which subject get into sudden lapses in attention. Which means sudden change in brain stimulation. Most of this type of disorder is widely found in children’s (5-18 years). These Electroencephalogram (EEG) signals are captured with long term monitoring system and are analyzed individually. In this paper, a Convolutional Neural Network to extract single channel EEG seizure features like Power, log sum of wavelet transform, cross correlation, and mean phase variance of each frame in a windows are extracted after pre-processing and classify them into normal or absence seizure class, is proposed as an empowerment of monitoring system by automatic detection of absence seizure. The training data is collected from the normal and absence seizure subjects in the form of Electroencephalogram. The objective is to perform automatic detection of absence seizure using single channel electroencephalogram signal as input. Here the data is used to train the proposed Convolutional Neural Network to extract and classify absence seizure. The Convolutional Neural Network consist of three layers 1] convolutional layer – which extract the features in the form of vector 2] Pooling layer – the dimensionality of output from convolutional layer is reduced and 3] Fully connected layer–the activation function called soft-max is used to find the probability distribution of output class. This paper goes through the automatic detection of absence seizure in detail and provide the comparative analysis of classification between Support Vector Machine and Convolutional Neural Network. The proposed approach outperforms the performance of Support Vector Machine by 80% in automatic detection of absence seizure and validated using confusion matrix.


Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1248
Author(s):  
Rafia Nishat Toma ◽  
Cheol-Hong Kim ◽  
Jong-Myon Kim

Condition monitoring is used to track the unavoidable phases of rolling element bearings in an induction motor (IM) to ensure reliable operation in domestic and industrial machinery. The convolutional neural network (CNN) has been used as an effective tool to recognize and classify multiple rolling bearing faults in recent times. Due to the nonlinear and nonstationary nature of vibration signals, it is quite difficult to achieve high classification accuracy when directly using the original signal as the input of a convolution neural network. To evaluate the fault characteristics, ensemble empirical mode decomposition (EEMD) is implemented to decompose the signal into multiple intrinsic mode functions (IMFs) in this work. Then, based on the kurtosis value, insignificant IMFs are filtered out and the original signal is reconstructed with the rest of the IMFs so that the reconstructed signal contains the fault characteristics. After that, the 1-D reconstructed vibration signal is converted into a 2-D image using a continuous wavelet transform with information from the damage frequency band. This also transfers the signal into a time-frequency domain and reduces the nonstationary effects of the vibration signal. Finally, the generated images of various fault conditions, which possess a discriminative pattern relative to the types of faults, are used to train an appropriate CNN model. Additionally, with the reconstructed signal, two different methods are used to create an image to compare with our proposed image creation approach. The vibration signal is collected from a self-designed testbed containing multiple bearings of different fault conditions. Two other conventional CNN architectures are compared with our proposed model. Based on the results obtained, it can be concluded that the image generated with fault signatures not only accurately classifies multiple faults with CNN but can also be considered as a reliable and stable method for the diagnosis of fault bearings.


Author(s):  
Wanli Wang ◽  
Botao Zhang ◽  
Kaiqi Wu ◽  
Sergey A Chepinskiy ◽  
Anton A Zhilenkov ◽  
...  

In this paper, a hybrid method based on deep learning is proposed to visually classify terrains encountered by mobile robots. Considering the limited computing resource on mobile robots and the requirement for high classification accuracy, the proposed hybrid method combines a convolutional neural network with a support vector machine to keep a high classification accuracy while improve work efficiency. The key idea is that the convolutional neural network is used to finish a multi-class classification and simultaneously the support vector machine is used to make a two-class classification. The two-class classification performed by the support vector machine is aimed at one kind of terrain that users are mostly concerned with. Results of the two classifications will be consolidated to get the final classification result. The convolutional neural network used in this method is modified for the on-board usage of mobile robots. In order to enhance efficiency, the convolutional neural network has a simple architecture. The convolutional neural network and the support vector machine are trained and tested by using RGB images of six kinds of common terrains. Experimental results demonstrate that this method can help robots classify terrains accurately and efficiently. Therefore, the proposed method has a significant potential for being applied to the on-board usage of mobile robots.


Sign in / Sign up

Export Citation Format

Share Document