scholarly journals Integral Sliding Control Approach for Generalized Cyclic Pursuit Formation Maintenance

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1217
Author(s):  
Antoine Ansart ◽  
Jyh-Ching Juang

This paper is concerned with the formation maintenance of a group of autonomous agents under generalized cyclic pursuit (GCP) law. The described pattern for agents under such formation is epicycle-like. For a network of agents to achieve such a formation, marginal stability of the overall network is required. The desired marginal stability of the network relies on each agents’ gain values, and uncertainties in these gains can occur. Previous studies have used fixed gains, we enhance the stability of the gains via a dynamic approach using an integral sliding controller (ISC). An ISC can ensure sliding behavior of the gains throughout the entire response, and it is shown that the gains are robust toward variations and thus make the network keep its marginal stability and its formation.

1996 ◽  
Vol 308 ◽  
pp. 31-62 ◽  
Author(s):  
Chi-Hwa Wang ◽  
R. Jackson ◽  
S. Sundaresan

This paper presents a linear stability analysis of a rapidly sheared layer of granular material confined between two parallel solid plates. The form of the steady base-state solution depends on the nature of the interaction between the material and the bounding plates and three cases are considered, in which the boundaries act as sources or sinks of pseudo-thermal energy, or merely confine the material while leaving the velocity profile linear, as in unbounded shear. The stability analysis is conventional, though complicated, and the results are similar in all cases. For given physical properties of the particles and the bounding plates it is found that the condition of marginal stability depends only on the separation between the plates and the mean bulk density of the particulate material contained between them. The system is stable when the thickness of the layer is sufficiently small, but if the thickness is increased it becomes unstable, and initially the fastest growing mode is analogous to modes of the corresponding unbounded problem. However, with a further increase in thickness a new mode becomes dominant and this is of an unusual type, with no analogue in the case of unbounded shear. The growth rate of this mode passes through a maximum at a certain value of the thickness of the sheared layer, at which point it grows much faster than any mode that could be shared with the unbounded problem. The growth rate of the dominant mode also depends on the bulk density of the material, and is greatest when this is neither very large nor very small.


1998 ◽  
Vol 4 (2) ◽  
pp. 73-90 ◽  
Author(s):  
Peter Vadasz ◽  
Saneshan Govender

The stability and onset of two-dimensional convection in a rotating fluid saturated porous layer subject to gravity and centrifugal body forces is investigated analytically. The problem corresponding to a layer placed far away from the centre of rotation was identified as a distinct case and therefore justifying special attention. The stability of a basic gravity driven convection is analysed. The marginal stability criterion is established in terms of a critical centrifugal Rayleigh number and a critical wave number for different values of the gravity related Rayleigh number. For any given value of the gravity related Rayleigh number there is a transitional value of the wave number, beyond which the basic gravity driven flow is stable. The results provide the stability map for a wide range of values of the gravity related Rayleigh number, as well as the corresponding flow and temperature fields.


In this paper the theory of the stability of viscous flow between two rotating coaxial cylinders which has been developed by Taylor, Jeffreys and Meksyn is extended to the case when the fluid considered is an electrical conductor and a magnetic field along the axis of the cylinders is present. A differential equation of order eight is derived which governs the situation in marginal stability; and a significant set of boundary conditions for the problem is formulated. The case when the two cylinders are rotating in the same direction and the difference ( d ) in their radii is small compared to their mean (R 0 ) is investigated in detail. A variational procedure for solving the underlying characteristic value problem and determining the critical Taylor numbers for the onset of instability is described. As in the case of thermal instability of a horizontal layer of fluid heated below, the effect of the magnetic field is to inhibit the onset of instability, the inhibiting effect being the greater, the greater the strength of the field and the value of the electrical conductivity. In both cases, the inhibiting effect of the magnetic field depends on the strength of the field ( H ), the density ( ρ ) and the coefficients of electrical conductivity ( σ ), kinematic viscosity ( v ) and magnetic permeability ( μ ) through the same non-dimensional combination Q =μ 2 H 2 d 2 σ/ pv ; however, the effect on rotational stability is more pronounced than on thermal instability. A table of the critical Taylor numbers for various values of Q is provided.


Author(s):  
Sk Shahid Nadim ◽  
Sudip Samanta ◽  
Nikhil Pal ◽  
Ibrahim M. ELmojtaba ◽  
Indranil Mukhopadhyay ◽  
...  

Author(s):  
Mohammad Saleh ◽  
Hassan Bevrani

This chapter presents an overview of key issues and technical challenges in a regional electric network, following the integration of a considerable amount of wind power. A brief survey on wind power system, the present status of wind energy worldwide, common dynamic models, and control loops for wind turbines are given. In this chapter, the Kurdistan electric network in the Northwest part of Iran is introduced as a case study system, and an analytical approach is conducted to evaluate the potential of wind power installation, overall capacity estimation, and economic issues, based on the practical data. Then, the impact of high penetration wind power on the system dynamic and performance for various wind turbine technologies is presented. The stability of integrated system is analyzed, and the need for revising of conventional controls and performance standards is emphasized. Finally, a STATCOM-based control approach is addressed to improve the system stability.


2020 ◽  
Vol 10 (11) ◽  
pp. 3719
Author(s):  
Ran Jiao ◽  
Wusheng Chou ◽  
Yongfeng Rong ◽  
Mingjie Dong

Aerial operation with unmanned aerial vehicle (UAV) manipulator is a promising field for future applications. However, the quadrotor UAV manipulator usually suffers from several disturbances, such as external wind and model uncertainties, when conducting aerial tasks, which will seriously influence the stability of the whole system. In this paper, we address the problem of high-precision attitude control for quadrotor manipulator which is equipped with a 2-degree-of-freedom (DOF) robotic arm under disturbances. We propose a new sliding-mode extended state observer (SMESO) to estimate the lumped disturbance and build a backstepping attitude controller to attenuate its influence. First, we use the saturation function to replace discontinuous sign function of traditional SMESO to alleviate the estimation chattering problem. Second, by innovatively introducing super-twisting algorithm and fuzzy logic rules used for adaptively updating the observer switching gains, the fuzzy adaptive saturation super-twisting extended state observer (FASTESO) is constructed. Finally, in order to further reduce the impact of sensor noise, we invite a tracking differentiator (TD) incorporated into FASTESO. The proposed control approach is validated with effectiveness in several simulations and experiments in which we try to fly UAV under varied external disturbances.


1974 ◽  
Vol 63 (3) ◽  
pp. 593-605 ◽  
Author(s):  
A. T. Richardson

After making the laboratory approximation of small magnetic Reynolds number, the steady, axisymmetric and purely azimuthal velocity profile that in principle can be generated in an incompressible viscous electrically conducting fluid contained in a fixed infinitely long circular cylinder by a magnetic field transverse to the cylinder axis and uniformly rotating with low frequency is subjected to infinitesimal axisymmetric perturbations. The principle of the exchange of stabilities is assumed to hold and the marginal-stability problem becomes a sixth-order eigenvalue problem involving the magnetic Taylor number and the axial wavenumber. An asymptotic analysis, based on the assumption that the magnetic Taylor number is large, and using solutions of the comparison equation d6y/dz6 = zy, is presented in order to obtain first approximations to the neutral-stability curves of the first and second eigenmodes, and compared with the results of direct numerical integration. It is found that at the onset of instability the secondary motions have a multi-cell structure, the motions in the region, near the cylinder wall, of adversely distributed angular momentum driving through weak viscous action the cells in the interior.


Sign in / Sign up

Export Citation Format

Share Document