scholarly journals A Two-Stage GAN for High-Resolution Retinal Image Generation and Segmentation

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 60
Author(s):  
Paolo Andreini ◽  
Giorgio Ciano ◽  
Simone Bonechi ◽  
Caterina Graziani ◽  
Veronica Lachi ◽  
...  

In this paper, we use Generative Adversarial Networks (GANs) to synthesize high-quality retinal images along with the corresponding semantic label-maps, instead of real images during training of a segmentation network. Different from other previous proposals, we employ a two-step approach: first, a progressively growing GAN is trained to generate the semantic label-maps, which describes the blood vessel structure (i.e., the vasculature); second, an image-to-image translation approach is used to obtain realistic retinal images from the generated vasculature. The adoption of a two-stage process simplifies the generation task, so that the network training requires fewer images with consequent lower memory usage. Moreover, learning is effective, and with only a handful of training samples, our approach generates realistic high-resolution images, which can be successfully used to enlarge small available datasets. Comparable results were obtained by employing only synthetic images in place of real data during training. The practical viability of the proposed approach was demonstrated on two well-established benchmark sets for retinal vessel segmentation—both containing a very small number of training samples—obtaining better performance with respect to state-of-the-art techniques.

Sensors ◽  
2020 ◽  
Vol 20 (16) ◽  
pp. 4601
Author(s):  
Juan Wen ◽  
Yangjing Shi ◽  
Xiaoshi Zhou ◽  
Yiming Xue

Currently, various agricultural image classification tasks are carried out on high-resolution images. However, in some cases, we cannot get enough high-resolution images for classification, which significantly affects classification performance. In this paper, we design a crop disease classification network based on Enhanced Super-Resolution Generative adversarial networks (ESRGAN) when only an insufficient number of low-resolution target images are available. First, ESRGAN is used to recover super-resolution crop images from low-resolution images. Transfer learning is applied in model training to compensate for the lack of training samples. Then, we test the performance of the generated super-resolution images in crop disease classification task. Extensive experiments show that using the fine-tuned ESRGAN model can recover realistic crop information and improve the accuracy of crop disease classification, compared with the other four image super-resolution methods.


2020 ◽  
Vol 37 (5) ◽  
pp. 855-864
Author(s):  
Nagendra Pratap Singh ◽  
Vibhav Prakash Singh

The registration of segmented retinal images is mainly used for the diagnosis of various diseases such as glaucoma, diabetes, and hypertension, etc. These retinal diseases depend on the retinal vessel structure. The fast and accurate registration of segmented retinal images helps to identify the changes in vessels and the diagnosis of the diseases. This paper presents a novel binary robust invariant scalable key point (BRISK) feature-based segmented retinal image registration approach. The BRISK framework is an efficient keypoint detection, description, and matching approach. The proposed approach contains three steps, namely, pre-processing, segmentation using matched filter based Gumbel pdf, and BRISK framework for registration of segmented source and target retinal images. The effectiveness of the proposed approach is demonstrated by evaluating the normalized cross-correlation of image pairs. Based on the experimental analysis, it has been observed that the performance of the proposed approach is better in both aspect, registration performance as well as computation time with respect to SURF and Harris partial intensity invariant feature descriptor based registration.


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Tianshi Wang ◽  
Li Liu ◽  
Huaxiang Zhang ◽  
Long Zhang ◽  
Xiuxiu Chen

With the continuous renewal of text classification rules, text classifiers need more powerful generalization ability to process the datasets with new text categories or small training samples. In this paper, we propose a text classification framework under insufficient training sample conditions. In the framework, we first quantify the texts by a character-level convolutional neural network and input the textual features into an adversarial network and a classifier, respectively. Then, we use the real textual features to train a generator and a discriminator so as to make the distribution of generated data consistent with that of real data. Finally, the classifier is cooperatively trained by real data and generated data. Extensive experimental validation on four public datasets demonstrates that our method significantly performs better than the comparative methods.


2020 ◽  
Vol 34 (01) ◽  
pp. 727-734
Author(s):  
Junyi Li ◽  
Xintong Wang ◽  
Yaoyang Lin ◽  
Arunesh Sinha ◽  
Michael Wellman

We propose an approach to generate realistic and high-fidelity stock market data based on generative adversarial networks (GANs). Our Stock-GAN model employs a conditional Wasserstein GAN to capture history dependence of orders. The generator design includes specially crafted aspects including components that approximate the market's auction mechanism, augmenting the order history with order-book constructions to improve the generation task. We perform an ablation study to verify the usefulness of aspects of our network structure. We provide a mathematical characterization of distribution learned by the generator. We also propose statistics to measure the quality of generated orders. We test our approach with synthetic and actual market data, compare to many baseline generative models, and find the generated data to be close to real data.


2020 ◽  
pp. 1-13
Author(s):  
Yundong Li ◽  
Yi Liu ◽  
Han Dong ◽  
Wei Hu ◽  
Chen Lin

The intrusion detection of railway clearance is crucial for avoiding railway accidents caused by the invasion of abnormal objects, such as pedestrians, falling rocks, and animals. However, detecting intrusions using deep learning methods from infrared images captured at night remains a challenging task because of the lack of sufficient training samples. To address this issue, a transfer strategy that migrates daytime RGB images to the nighttime style of infrared images is proposed in this study. The proposed method consists of two stages. In the first stage, a data generation model is trained on the basis of generative adversarial networks using RGB images and a small number of infrared images, and then, synthetic samples are generated using a well-trained model. In the second stage, a single shot multibox detector (SSD) model is trained using synthetic data and utilized to detect abnormal objects from infrared images at nighttime. To validate the effectiveness of the proposed method, two groups of experiments, namely, railway and non-railway scenes, are conducted. Experimental results demonstrate the effectiveness of the proposed method, and an improvement of 17.8% is achieved for object detection at nighttime.


2021 ◽  
Vol 12 (5) ◽  
pp. 439-448
Author(s):  
Edward Collier ◽  
Supratik Mukhopadhyay ◽  
Kate Duffy ◽  
Sangram Ganguly ◽  
Geri Madanguit ◽  
...  

Author(s):  
Zefang Lin ◽  
Jianping Huang ◽  
Yingyin Chen ◽  
Xiao Zhang ◽  
Wei Zhao ◽  
...  

2021 ◽  
pp. 1-21
Author(s):  
Sergio Ripoll ◽  
Vicente Bayarri ◽  
Francisco J. Muñoz ◽  
Ricardo Ortega ◽  
Elena Castillo ◽  
...  

Our Palaeolithic ancestors did not make good representations of themselves on the rocky surfaces of caves and barring certain exceptions – such as the case of La Marche (found on small slabs of stone or plaquettes) or the Cueva de Ambrosio – the few known examples can only be referred to as anthropomorphs. As such, only hand stencils give us a real picture of the people who came before us. Hand stencils and imprints provide us with a large amount of information that allows us to approach not only their physical appearance but also to infer less tangible details, such as the preferential use of one hand over the other (i.e., handedness). Both new and/or mature technologies as well as digital processing of images, computers with the ability to process very high resolution images, and a more extensive knowledge of the Palaeolithic figures all help us to analyse thoroughly the hands in El Castillo cave. The interdisciplinary study presented here contributes many novel developments based on real data, representing a major step forward in knowledge about our predecessors.


Sign in / Sign up

Export Citation Format

Share Document