scholarly journals An Efficient Two-Stage Receiver Base on AOR Iterative Algorithm and Chebyshev Acceleration for Uplink Multiuser Massive-MIMO OFDM Systems

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 92
Author(s):  
Yung-Ping Tu ◽  
Chih-Yung Chen ◽  
Kuang-Hao Lin

The massive multiple-input multiple-output systems (M-MIMO) and orthogonal frequency-division multiplexing (OFDM) are considered to be some of the most promising key techniques in the emerging 5G and advanced wireless communication systems nowadays. Not only are the benefits of applying M-MIMO and OFDM for broadband communication well known, but using them for the application of the Internet of Things (IoT) requires a large amount of wireless transmission, which is a developing topic. However, its high complexity becomes a problem when there are numerous antennas. In this paper, we provide an effective two-stage multiuser detector (MUD) with the assistance of the accelerated over-relaxation (AOR) iterative algorithm and Chebyshev acceleration for the uplink of M-MIMO OFDM systems to achieve a better balance between bit error rate (BER) performance and computational complexity. The first stage of the receiver consists of an accelerated over-relaxation (AOR)-based estimator and is intended to yield a rough initial estimate of the relaxation factor ω, the acceleration parameter γ, and transmitted symbols. In the second stage, the Chebyshev acceleration method is used for detection, and a more precise signal is produced through efficient iterative estimation. Additionally, we call this proposed scheme Chebyshev-accelerated over-relaxation (CAOR) detection. Conducted simulations show that the developed receiver, with a modest computational load, can provide superior performance compared with previous works, especially in the MU M-MIMO uplink environments.

2016 ◽  
Vol 4 (1) ◽  
pp. 150-163 ◽  
Author(s):  
Rizky Pratama Hudhajanto ◽  
I Gede Puja Astawa ◽  
Amang Sudarsono

Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) is the most used wireless transmission scheme in the world. However, its security is the interesting problem to discuss if we want to use this scheme to transmit a sensitive data, such as in the military and commercial communication systems. In this paper, we propose a new method to increase the security of MIMO-OFDM system using the change of location of fake subcarrier. The fake subcarriers’ location is generated per packet of data using Pseudo Random sequence generator. The simulation results show that the proposed scheme does not decrease the performance of conventional MIMO-OFDM. The attacker or eavesdropper gets worse Bit Error Rate (BER) than the legal receiver compared to the conventional MIMO-OFDM system.


2011 ◽  
Vol 2011 ◽  
pp. 1-4 ◽  
Author(s):  
Zhen-dong Zhang ◽  
Bin Wu ◽  
Yu-mei Zhou

The combination of multiple-input multiple-output (MIMO) signal processing with orthogonal frequency-division multiplexing (OFDM) technique is one favored solution in wireless communication systems for enhancing data rate. However, the computational complexity is also linear increased with the number of data streams. Generally, multiple finite impulse response (FIR) interpolations and decimations are added to solve the multiple data streams in a MIMO OFDM system, which cause a large increase in the hardware cost. In this paper, two multipath pipelined polyphase structures for FIR interpolation and decimation to efficiently deal with the simultaneous multiple data streams are proposed. According to the proposed structures, M simultaneous data streams can be supported in the M-component polyphase interpolation or decimation with only one set of computation units. Implementation examples show that up to 56% reduction of silicon area can be obtained over the traditional polyphase structures.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Xiaoming Chen ◽  
Hua Wang ◽  
Wei Fan ◽  
Yaning Zou ◽  
Andreas Wolfgang ◽  
...  

The effects of oscillator phase noises (PNs) on multiple-input multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems are studied. It is shown that PNs of common oscillators at the transmitter and at the receiver have the same influence on the performance of (single-stream) beamforming MIMO-OFDM systems, yet different influences on spatial multiplexing MIMO-OFDM systems with singular value decomposition (SVD) based precoding/decoding. When each antenna is equipped with an independent oscillator, the PNs at the transmitter and at the receiver have different influences on beamforming MIMO-OFDM systems as well as spatial multiplexing MIMO-OFDM systems. Specifically, the PN effect on the transmitter (receiver) can be alleviated by having more transmit (receive) antennas for the case of independent oscillators. It is found that the independent oscillator case outperforms the common oscillator case in terms of error vector magnitude (EVM).


2019 ◽  
Vol 8 (2) ◽  
pp. 4347-4353

Multiple Input Multiple Output Orthogonal Frequency Division Multiplexing (MIMO OFDM) is a key technology for contemporary communication systems due to its spectral efficiency, higher data rates, better diversity gain, good link reliability and both inter symbol interference (ISI) and multipath fading free transmission. However, due to the presence of OFDM, MIMO-OFDM suffers from high peak to average power ratio (PAPR). Even though, several schemes are available to mitigate PAPR, there is no standard solution. Selective Mapping (SLM) significantly reduces the PAPR in OFDM systems at the cost of computational complexity (CC). The CC of SLM can be reduced by proper design of SLM. This paper considers a low complexity SLM (LC SLM) scheme in which both the CC and length of the index of selected phase sequence are significantly reduced. The PAPR of an SLM-OFDM depends on the number of subcarriers in OFDM, the number of candidate blocks in SLM and selected phase sequence and this paper investigate various phase sequences and analyses their PAPR performance. Simulation results show the superior performance of Riemann sequence over the other phase sequences.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Lahcen Amhaimar ◽  
Saida Ahyoud ◽  
Ali Elyaakoubi ◽  
Abdelmoumen Kaabal ◽  
Kamal Attari ◽  
...  

The transceiver combination technology, of orthogonal frequency division multiplexing (OFDM) with multiple-input multiple-output (MIMO), provides a viable alternative to enhance the quality of service and simultaneously to achieve high spectral efficiency and data rate for wireless mobile communication systems. However, the high peak-to-average power ratio (PAPR) is the main concern that should be taken into consideration in the MIMO-OFDM system. Partial transmit sequences (PTSs) is a promising scheme and straightforward method, able to achieve an effective PAPR reduction performance, but it requires an exhaustive search to find the optimum phase factors, which causes high computational complexity increased with the number of subblocks. In this paper, a reduced computational complexity PTS scheme is proposed, based on a novel swarm intelligence algorithm, called fireworks algorithm (FWA). Simulation results confirmed the adequacy and the effectiveness of the proposed method which can effectively reduce the computation complexity while keeping good PAPR reduction. Moreover, it turns out from the results that the proposed PTS scheme-based FWA clearly outperforms the hottest and most important evolutionary algorithm in the literature like simulated annealing (SA), particle swarm optimization (PSO), and genetic algorithm (GA).


2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
Young-Han Nam ◽  
Lingjia Liu ◽  
Jianzhong (Charlie) Zhang

Phase-shift cyclic-delay diversity (PS CDD) scheme and space-frequency-block-code (SFBC) PS CDD are developed for multiple-input-multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM) systems. The proposed PS CDD scheme preserves the diversity advantage of traditional CDD in uncorrelated multiantenna channels, and furthermore removes frequency-selective nulling problem of the traditional CDD in correlated multiantenna channels.


VLSI Design ◽  
2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Hiroki Iwaizumi ◽  
Shingo Yoshizawa ◽  
Yoshikazu Miyanaga

A processor design for singular value decomposition (SVD) and compression/decompression of feedback matrices, which are mandatory operations for SVD multiple-input multiple-output orthogonal frequency-division multiplexing (MIMO-OFDM) systems, is proposed and evaluated. SVD-MIMO is a transmission method for suppressing multistream interference and improving communication quality by beamforming. An application specific instruction-set processor (ASIP) architecture is adopted to achieve flexibility in terms of operations and matrix size. The proposed processor realizes a high-speed/low-power design and real-time processing by the parallelization of floating-point units (FPUs) and arithmetic instructions specialized in complex matrix operations.


Author(s):  
Rizky Pratama Hudhajanto ◽  
I Gede Puja Astawa ◽  
Amang Sudarsono

Multiple-Input Multiple-Output Orthogonal Frequency Division Multiplexing (MIMO-OFDM) is the most used wireless transmission scheme in the world. However, its security is the interesting problem to discuss if we want to use this scheme to transmit a sensitive data, such as in the military and commercial communication systems. In this paper, we propose a new method to increase the security of MIMO-OFDM system using the change of location of fake subcarrier. The fake subcarriers’ location is generated per packet of data using Pseudo Random sequence generator. The simulation results show that the proposed scheme does not decrease the performance of conventional MIMO-OFDM. The attacker or eavesdropper gets worse Bit Error Rate (BER) than the legal receiver compared to the conventional MIMO-OFDM system.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ajay Kumar Yadav ◽  
Pritam Keshari Sahoo ◽  
Yogendra Kumar Prajapati

Abstract Orthogonal frequency division multiplexing (OFDM) based massive multiuser (MU) multiple input multiple output (MIMO) system is popularly known as high peak-to-average power ratio (PAPR) issue. The OFDM-based massive MIMO system exhibits large number of antennas at Base Station (BS) due to the use of large number of high-power amplifiers (HPA). High PAPR causes HPAs to work in a nonlinear region, and hardware cost of nonlinear HPAs are very high and also power inefficient. Hence, to tackle this problem, this manuscript suggests a novel scheme based on the joint MU precoding and PAPR minimization (PP) expressed as a convex optimization problem solved by steepest gradient descent (GD) with μ-law companding approach. Therefore, we develop a new scheme mentioned to as MU-PP-GDs with μ-law companding to minimize PAPR by compressing and enlarging of massive MIMO OFDM signals simultaneously. At CCDF = 10−3, the proposed scheme (MU-PP-GDs with μ-law companding for Iterations = 100) minimizes the PAPR to 3.70 dB which is better than that of MU-PP-GDs, (iteration = 100) as shown in simulation results.


Sign in / Sign up

Export Citation Format

Share Document