Performance Evaluation of UAV-Based NOMA Networks with Hardware Impairment
In this paper, we evaluate the outage performance of a non-orthogonal multiple access (NOMA)-enabled unmanned aerial vehicle (UAV) where two users on the ground are simultaneously served by a UAV for a spectral efficiency purpose. In practice, hardware impairments at the transceiver cause distortion noise, which results in the performance loss of wireless systems. As a consequence, hardware impairment is an unavoidable factor in the system design process. Hence, we take into account the effects of hardware impairment (HI) on the performance of the proposed system. In this setting, to evaluate the system performance, the closed-form expressions of the outage probability of two NOMA users and the ergodic capacity are derived as well as their asymptotic expressions for a high signal-to-noise ratio (SNR). Finally, based on Monte-Carlo simulations, we verify the analytical expressions and investigate the effects on the main system parameters, i.e., the transmit SNR and level of HI, on the system performance metrics. The results show that the performance for the near NOMA user is better than of that for the far NOMA user in the case of perfect hardware; however, in the case of hardware impairment, an inversion happens at a high transmit power of the UAV in terms of the ergodic capacity.