alamouti scheme
Recently Published Documents


TOTAL DOCUMENTS

75
(FIVE YEARS 8)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Wei Song ◽  
Bing Guan

Reconfigurable intelligent surface (RIS) is considered to be a new technology with great potential and is being studied extensively and deeply. And the application extension of STBC in the RIS-aided scheme provides a new train of thought for the research of channel coding. In this paper, we propose we extend the scheme of using the RIS to adjust the phase and reconfigure the reflected signal and propose the design of the RIS-aided QO-STBC scheme and the RIS-aided QO-STBC scheme with interference cancellation. Particularly in the RIS-aided QO-STBC scheme with interference cancellation, the design can achieve the transmission of the full rate and full diversity using an auxiliary reflection group to eliminate the influence of interference term. Also, the advantages and disadvantages of the schemes are analyzed in the paper, and the decoding algorithms with different complexity used in the proposed schemes are described. The simulation results show that the performance of the RIS-aided QO-STBC scheme with interference cancellation is better than that of the RIS-aided QO-STBC scheme and the RIS-aided Alamouti scheme by about 5 dB and 7 dB at 1 0 − 3 BER because of diversity gain and coding gain.


Author(s):  
Ahmed A. Alabdel Abass ◽  
Navya Prarthana Divvala

The broadcast nature of wireless networks makes them susceptible to attacks by eavesdroppers than wired networks. Any untrusted node can eavesdrop on the medium, listen to transmissions and obtain sensitive information within the wireless network. In this paper, we propose a new mechanism which combines the advantages of two techniques namely iJam and OFDM phase encryption. Our modified mechanism makes iJam more bandwidth efficient by using Alamouti scheme to take advantage of the repetition inherent in its implementation. The adversary model is extended to the active adversary case, which has not been done in the original work of iJam and OFDM phase encryption. We propose, through a max min optimization model, a framework that maximizes the secrecy rate by means of a friendly jammer. We formulate a Zero-Sum game that captures the strategic decision making between the transmitter receiver pair and the adversary. We apply the fictitious play (FP) algorithm to reach the Nash equilibria (NE) of the game. Our simulation results show a significant improvement in terms of the ability of the eavesdropper to benefit from the received information over the traditional schemes, i.e. iJam or OFDM phase encryption.


Out object in this paper it to study, the effect of nonlinearity on the bit error rate (BER) of MIMO systems in M-QAM modulation techniques. We consider Saleh’s model (power amplifier model) for the nonlinearity, and apply the nonlinear model on MIMO system with receiver diversity and transmitter diversity. For transmitter diversity, the Space-Time Block Coding (STBC) based on Alamouti scheme is used to provide transmits diversity for two transmitting antennas. The results show that, if there is a high variation in the amplitude of the M- QAM symbols, there will behigh effect of nonlinearity that causes high BER especially for high amplitude symbols at high SNR.


2019 ◽  
pp. 22-28
Author(s):  
Cebrail Ciflikli

Wireless communication faces a number of adversities and obstacles as a result of fading and co-channel interference (CCI). Diversity with beamformer techniques may be used to mitigate degradation in the system performance. Alamouti space-time-block-code (STBC) is a strong scheme focused on accomplishing spatial diversity at the transmitter, which needs a straightforward linear processing in the receiver. Also, high bit-error-rate (BER) performance can be achieved by using the multiple-input multiple-output (MIMO) system with beamforming technology. This approach is particularly useful for CCI suppression. Exploiting the channel state information (CSI) at the transmitter can improve the STBC through the use of a beamforming precoding. In this paper, we propose the combination between Alamouti STBC and block diagonalization (BD) for downlink multi-user MIMO system. Also, this paper evaluates the system performance improvement of the extended Alamouti scheme, with the implementation of BD precoding over a Rayleigh and Rician channel. Simulation results show that the combined system has performance better than the performance of beamforming system. Also, it shows that the combined system performance of extended Alamouti outperforms the combined system performance without extended Alamouti. Furthermore, numerical results confirm that the Rician channel can significantly improve the combined system performance.


2018 ◽  
Vol 21 (3) ◽  
pp. 344-349
Author(s):  
Lwaa Faisal Abdulameer ◽  
Hala Fadhil

Free Space Optics (FSO) plays a vital role in modern wireless communications due to its advantages over fiber optics and RF techniques where a transmission of huge bandwidth and access to remote places become possible. The specific aim of this research is to analyze the Bit-Error Rate (BER) for FSO communication system when the signal is sent the over medium of turbulence channel, where the fading channel is described by the Gamma-Gamma model. The signal quality is improved by using Optical Space-Time Block- Code (OSTBC) and then the BER will be reduced. Optical 2×2 Alamouti scheme required 14 dB bit energy to noise ratio (Eb/N0) at 10-5 bit error rate (BER) which gives 3.5 dB gain as compared to no diversity scheme. The results show that using Multiple-Input-Multiple-Output (MIMO) technique represented by Alamouti scheme gives the improved BER performance as compared with no diversity (Single-Input-Single-Output (SISO)) technique.


Sign in / Sign up

Export Citation Format

Share Document