scholarly journals An Approach to the Construction of a Recursive Argument of Polynomial Evaluation in the Discrete Log Setting

Electronics ◽  
2022 ◽  
Vol 11 (1) ◽  
pp. 131
Author(s):  
Sungwook Kim

Succinct Non-interactive Arguments of Knowledge (SNARks) are receiving a lot of attention as a core privacy-enhancing technology for blockchain applications. Polynomial commitment schemes are important building blocks for the construction of SNARks. Polynomial commitment schemes enable the prover to commit to a secret polynomial of the prover and convince the verifier that the evaluation of the committed polynomial is correct at a public point later. Bünz et al. recently presented a novel polynomial commitment scheme with no trusted setup in Eurocrypt’20. To provide a transparent setup, their scheme is built over an ideal class group of imaginary quadratic fields (or briefly, class group). However, cryptographic assumptions on a class group are relatively new and have, thus far, not been well-analyzed. In this paper, we study an approach to transpose Bünz et al.’s techniques in the discrete log setting because the discrete log setting brings a significant improvement in efficiency and security compared to class groups. We show that the transposition to the discrete log setting can be obtained by employing a proof system for the equality of discrete logarithms over multiple bases. Theoretical analysis shows that the transposition preserves security requirements for a polynomial commitment scheme.

2021 ◽  
Vol 222 ◽  
pp. 157-167
Author(s):  
Henry H. Kim

2018 ◽  
Vol 62 (2) ◽  
pp. 395-442 ◽  
Author(s):  
Daniel Smertnig

AbstractIf H is a monoid and a = u1 ··· uk ∈ H with atoms (irreducible elements) u1, … , uk, then k is a length of a, the set of lengths of a is denoted by Ⅼ(a), and ℒ(H) = {Ⅼ(a) | a ∈ H} is the system of sets of lengths of H. Let R be a hereditary Noetherian prime (HNP) ring. Then every element of the monoid of non-zero-divisors R• can be written as a product of atoms. We show that if R is bounded and every stably free right R-ideal is free, then there exists a transfer homomorphism from R• to the monoid B of zero-sum sequences over a subset Gmax(R) of the ideal class group G(R). This implies that the systems of sets of lengths, together with further arithmetical invariants, of the monoids R• and B coincide. It is well known that commutative Dedekind domains allow transfer homomorphisms to monoids of zero-sum sequences, and the arithmetic of the latter has been the object of much research. Our approach is based on the structure theory of finitely generated projective modules over HNP rings, as established in the recent monograph by Levy and Robson. We complement our results by giving an example of a non-bounded HNP ring in which every stably free right R-ideal is free but which does not allow a transfer homomorphism to a monoid of zero-sum sequences over any subset of its ideal class group.


2005 ◽  
Vol 48 (4) ◽  
pp. 576-579 ◽  
Author(s):  
Humio Ichimura

AbstractLet m = pe be a power of a prime number p. We say that a number field F satisfies the property when for any a ∈ F×, the cyclic extension F(ζm, a1/m)/F(ζm) has a normal p-integral basis. We prove that F satisfies if and only if the natural homomorphism is trivial. Here K = F(ζm), and denotes the ideal class group of F with respect to the p-integer ring of F.


1994 ◽  
Vol 46 (1) ◽  
pp. 169-183 ◽  
Author(s):  
Jurgen Hurrelbrink

AbstractThis is about results on certain regular graphs that yield information about the structure of the ideal class group of quadratic number fields associated with these graphs. Some of the results can be formulated in terms of the quadratic forms x2 + 27y2, x2 + 32y2, x2 + 64y2.


1992 ◽  
Vol 35 (3) ◽  
pp. 361-370 ◽  
Author(s):  
Christian Friesen

AbstractLet q be a positive power of an odd prime p, and let Fq(t) be the function field with coefficients in the finite field of q elements. Let denote the ideal class number of the real quadratic function field obtained by adjoining the square root of an even-degree monic . The following theorem is proved: Let n ≧ 1 be an integer not divisible by p. Then there exist infinitely many monic, squarefree polynomials, such that n divides the class number, . The proof constructs an element of order n in the ideal class group.


2019 ◽  
Vol 71 (6) ◽  
pp. 1395-1419
Author(s):  
Hugo Chapdelaine ◽  
Radan Kučera

AbstractThe aim of this paper is to study the group of elliptic units of a cyclic extension $L$ of an imaginary quadratic field $K$ such that the degree $[L:K]$ is a power of an odd prime $p$. We construct an explicit root of the usual top generator of this group, and we use it to obtain an annihilation result of the $p$-Sylow subgroup of the ideal class group of $L$.


1966 ◽  
Vol 27 (1) ◽  
pp. 239-247 ◽  
Author(s):  
Kenkichi Iwasawa

In the first part of the present paper, we shall make some simple observations on the ideal class groups of algebraic number fields, following the group-theoretical method of Tschebotarew. The applications on cyclotomic fields (Theorems 5, 6) may be of some interest. In the last section, we shall give a proof to a theorem of Kummer on the ideal class group of a cyclotomic field.


Sign in / Sign up

Export Citation Format

Share Document