scholarly journals Design and Implementation of a Metadata Repository about UML Class Diagrams. A Software Tool Supporting the Automatic Feeding of the Repository

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 201
Author(s):  
Paolino Di Felice ◽  
Gaetanino Paolone ◽  
Romolo Paesani ◽  
Martina Marinelli

Model-Driven Engineering is largely recognized as the most powerful method for the design of complex software. This study deals with the automated archival of metadata about the content of UML class diagrams (a particularly relevant category of models) into a pre-existing repository. To define the structure of the repository, we started from the definition of a UML metamodel. From the latter, we derived the schema of the metadata repository. Then, a parser was developed that is responsible for extracting the useful information from the XMI file about class diagrams and enters it as metadata into the repository. The parser has been implemented as a Java web interface, while the metadata repository has been implemented as a PostgreSQL database based on the JSONB data type. The metadata repository is thought to support modelers in the initial phase of the process of the development of new models when looking for artifacts to start from. The schema of the metadata repository and the Java code of the parser are available from the authors.

2020 ◽  
Vol 19 (10) ◽  
pp. 1602-1618 ◽  
Author(s):  
Thibault Robin ◽  
Julien Mariethoz ◽  
Frédérique Lisacek

A key point in achieving accurate intact glycopeptide identification is the definition of the glycan composition file that is used to match experimental with theoretical masses by a glycoproteomics search engine. At present, these files are mainly built from searching the literature and/or querying data sources focused on posttranslational modifications. Most glycoproteomics search engines include a default composition file that is readily used when processing MS data. We introduce here a glycan composition visualizing and comparative tool associated with the GlyConnect database and called GlyConnect Compozitor. It offers a web interface through which the database can be queried to bring out contextual information relative to a set of glycan compositions. The tool takes advantage of compositions being related to one another through shared monosaccharide counts and outputs interactive graphs summarizing information searched in the database. These results provide a guide for selecting or deselecting compositions in a file in order to reflect the context of a study as closely as possible. They also confirm the consistency of a set of compositions based on the content of the GlyConnect database. As part of the tool collection of the Glycomics@ExPASy initiative, Compozitor is hosted at https://glyconnect.expasy.org/compozitor/ where it can be run as a web application. It is also directly accessible from the GlyConnect database.


Author(s):  
Liliana Maria Favre

Systems and applications aligned with new paradigms such as cloud computing and internet of the things are becoming more complex and interconnected, expanding the areas in which they are susceptible to attacks. Their security can be addressed by using model-driven engineering (MDE). In this context, specific IoT or cloud computing metamodels emerged to support the systematic development of software. In general, they are specified through semiformal metamodels in MOF style. This article shows the theoretical foundations of a method for automatically constructing secure metamodels in the context of realizations of MDE such as MDA. The formal metamodeling language Nereus and systems of transformation rules to bridge the gap between formal specifications and MOF are described. The main contribution of this article is the definition of a system of transformation rules called NEREUStoMOF for transforming automatically formal metamodeling specifications in Nereus to semiformal-MOF metamodels annotated in OCL.


2010 ◽  
Vol 29 (4) ◽  
pp. 171 ◽  
Author(s):  
Alessio Malizia ◽  
Paolo Bottoni ◽  
S. Levialdi

The design and development of a digital library involves different stakeholders, such as: information architects, librarians, and domain experts, who need to agree on a common language to describe, discuss, and negotiate the services the library has to offer. To this end, high-level, language-neutral models have to be devised. Metamodeling techniques favor the definition of domainspecific visual languages through which stakeholders can share their views and directly manipulate representations of the domain entities. This paper describes CRADLE (Cooperative-Relational Approach to Digital Library Environments), a metamodel-based framework and visual language for the definition of notions and services related to the development of digital libraries. A collection of tools allows the automatic generation of several services, defined with the CRADLE visual language, and of the graphical user interfaces providing access to them for the final user. The effectiveness of the approach is illustrated by presenting digital libraries generated with CRADLE, while the CRADLE environment has been evaluated by using the cognitive dimensions framework.


Author(s):  
A S Mukhin ◽  
I A Rytsarev ◽  
R A Paringer ◽  
A V Kupriyanov ◽  
D V Kirsh

The article is devoted to the definition of such groups in social networks. The object of the study was selected data social network Vk. Text data was collected, processed and analyzed. To solve the problem of obtaining the necessary information, research was conducted in the field of optimization of data collection of the social network Vk. A software tool that provides the collection and subsequent processing of the necessary data from the specified resources has been developed. The existing algorithms of text analysis, mainly of large volume, were investigated and applied.


2018 ◽  
Vol 8 (1) ◽  
Author(s):  
Daniel Perovich ◽  
Leonardo Rodrıguez Rodrıguez ◽  
Andres Vignaga

Component-based development can be addressed from two different fronts, or more precisely, from two different levels. One of them regards the technology used for system implementation, and the other is a previous and more abstract level, where the focus is set to the logical structure of the solution and where technological issues are not considered. Model Driven Architecture promotes such separation by distinguishing platform independent models from platform specific models. In alignment with this approach, this article proposes a mapping from the tiered and platform independent architecture for information systems resulting from the application of a widely known methodological approach, to the available constructs in the J2EE platform. This mapping allows the definition of transformations between platform independent models, resulting from the referred methodology where it is possible to abstractly reason about the solution, and platform specific models which are aligned with technological constructs and are directly implemented.


2013 ◽  
pp. 93-107
Author(s):  
Najet Zoubeir ◽  
Adel Khalfallah ◽  
Samir Ben Ahmed

The definition of the semantics of visual languages, in particular Unified Modeling Language (UML) diagrams, using graph formalism has known a wide success, since graphs fit the multi-dimensional nature of this kind of language. However, constraints written in Object Constraint Language (OCL) and defined on these models are still not well integrated within this graph-based semantics. In this chapter, the authors propose an integrated semantics of OCL constraints within class diagrams, using graph transformation systems. Their contribution is divided into two parts. In the first part, they introduce graph constraint patterns, as the translation into graphs of a subset of OCL expressions. These patterns are validated with experimental examples using the GROOVE toolset. In the second part, the authors define the relation between OCL and UML models within their graph transformation system.


Author(s):  
Liliana Favre

New paradigms such as pervasive computing, cloud computing, and the internet of things (IoT) are transforming the software industry and the business world. Organizations need to redesign their models and processes to be sustainable. Smartphones are at the core of these paradigms, letting us locate and easily interact with the world around us. Frequently, the development of mobile software requires of the adaption of valuable and tested non-mobile software. Most challenges in this kind of software modernization are related to the diversity of platforms on the smartphones market and to the need of systematic and reusable processes with a high degree of automation that reduce time, cost, and risks. This chapter proposes a modernization framework based on model-driven engineering (MDE). It allows integrating legacy code with the native behaviors of the different mobile platform through cross-platform languages. Realizations of the framework for the migration of C/C++ or Java code to mobile platforms through the Haxe multiplatform language are described.


Author(s):  
Pablo Nicolás Díaz Bilotto ◽  
Liliana Favre

Software developers face several challenges in deploying mobile applications. One of them is the high cost and technical complexity of targeting development to a wide spectrum of platforms. The chapter proposes to combine techniques based on MDA (Model Driven Architecture) with the HaXe language. The outstanding ideas behind MDA are separating the specification of the system functionality from its implementation on specific platforms, managing the software evolution, increasing the degree of automation of model transformations, and achieving interoperability with multiple platforms. On the other hand, HaXe is a very modern high level programming language that allows us to generate mobile applications that target all major mobile platforms. The main contributions of this chapter are the definition of a HaXe metamodel, the specification of a model-to-model transformation between Java and HaXe and, the definition of an MDA migration process from Java to mobile platforms.


Author(s):  
Nicholas S. Samaras ◽  
Costas Chaikalis ◽  
Giorgios Siafakas

Smart houses represent a modern technology which can secure and facilitate our life. The objective of this chapter is to adapt medical sensors to home automated systems, which collect medical data such as blood pressure, heart rate and electrical heart activity for elderly and/or disabled persons. Firstly, the collected data is transferred to a home server and to an external manager for further analysis. Subsequently, data is stored at a database where monitoring is available only for authorized users via a simple web interface. The IEEE 802.15.4 wireless standard has been chosen as the preferred solution for communication in the smart house. Finally, two implementation scenarios of the smart house for an elderly and/or disabled person are simulated using the Custodian software tool. This case study shows that simulating the automation system of a smart house before the implementation is advantageous.


Author(s):  
Antonio Bucchiarone ◽  
Davide Di Ruscio ◽  
Henry Muccini ◽  
Patrizio Pelliccione

When engineering complex and distributed software and hardware systems (increasingly used in many sectors, such as manufacturing, aerospace, transportation, communication, energy, and health-care), quality has become a big issue, since failures can have economic consequences and can also endanger human life. Model-based specifications of component-based systems permit to explicitly model the structure and behaviour of components and their integration. In particular Software Architectures (SA) have been advocated as an effective means to produce quality systems. In this chapter by combining different technologies and tools for analysis and development, we propose an architecture-centric model-driven approach to validate required properties and to generate the system code. Functional requirements are elicited and used for identifying expected properties the architecture shall express. The architectural compliance to the properties is formally demonstrated, and the produced architectural model is used to automatically generate Java code. Suitable transformations assure that the code is conforming to both structural and behavioural SA constraints. This chapter describes the process and discusses how some existing tools and languages can be exploited to support the approach.


Sign in / Sign up

Export Citation Format

Share Document