scholarly journals On the Design of In-Wheel-Hub Motor Transmission Systems with Six-Link Mechanisms for Electric Vehicles

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 2920 ◽  
Author(s):  
Ngoc-Tan Hoang ◽  
Hong-Sen Yan

Nowadays, there are several electric vehicles (EV) on the market, due to the innovation of technology that promotes new components such as batteries, transmissions, and electric motors. This study proposes the design procedure for the configuration synthesis and simulation of in-wheel-hub motor transmissions with six-link mechanisms. The synthesis process shows six mechanisms with six members and eight joints, 15 new clutchless motor transmissions, and 16 new clutched motor transmissions. A novel motor transmission with the possibility of synthesized configurations is chosen as a case to analyze the working rules connected with the power flow modes and operation modes. Moreover, this design is modeled for the simulation process that generates the results of the operation mode transition and energy regulation.

Author(s):  
Ngoc-Tan Hoang ◽  
Hong-Sen Yan

Nowadays, there are several electric vehicle (EV) on the market, due to the innovation of technology that promotes the new components such as battery, transmission, electric motors. This paper proposes a design approach for the configuration synthesis and simulation of the in-wheel-hub motor transmissions with the six-link mechanisms. The synthesis process shows 6 mechanisms with six members and eight joints, 15 new clutchless motor transmissions and 16 new clutched motor transmissions. A novel motor transmission in the feasibility of the synthesized configurations is selected as an example to analyze the working principle with operation modes and power flow paths. And, this design is modeled for the simulation process that generates the results of operation mode transition and energy regulation.


2019 ◽  
Vol 9 (1) ◽  
pp. 140
Author(s):  
Ngoc-Tan Hoang ◽  
Hong-Sen Yan

A decade ago, electric vehicles (EV) made a boom in the automobile market, as they started to become a growing market section in the transportation space. The reasons behind the boom were to decrease environmental pollution by reducing the use of fossil fuels, lowering transportation operating costs, and increased general consumer interest in the new technology. This work generates a streamlined process for the design and simulation of motor transmissions with eight-link mechanisms. This procedure presents a wide range of motor transmissions such as 34 new clutchless systems and 34 new clutched systems. Two novel feasible motor transmissions of the design process are taken as a sample to dissect the working principle conjoined both power flow paths and operation modes. In addition, these designs are conducted for modeling and computer simulation procedures that obtain the results of the energy management strategy and operation mode variation.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Xiangyang Xu ◽  
Hanqiao Sun ◽  
Yanfang Liu ◽  
Peng Dong

This paper presents a novel design approach to systematically synthesize available configurations for dedicated hybrid transmission (DHT) systems subject to design constraints and required operation modes by using simple planetary gear sets (PGSs). The configuration synthesis process includes two main steps. The first step is the synthesis of the PGSs by synthesizing all the components to a simple PGS subject to the design constraints. The second step is to combine the structural and shift elements into all configurations and detect those meeting the requirements with the mechanical and operation mode constraints. By applying the proposed design approach, the configurations of the Toyota’s hybrid systems (THSs) and Voltec-II prove the feasibility of the method. Furthermore, several new DHT configurations are synthesized under the new design conditions. The proposed design approach is capable of systematically synthesizing new DHT systems with multiple PGSs, variable design constraints, and expected modes.


2021 ◽  
Vol 12 (1) ◽  
pp. 6
Author(s):  
Alexander Koch ◽  
Tim Bürchner ◽  
Thomas Herrmann ◽  
Markus Lienkamp

Electrification and automatization may change the environmental impact of vehicles. Current eco-driving approaches for electric vehicles fit the electric power of the motor by quadratic functions and are limited to powertrains with one motor and single-speed transmission or use computationally expensive algorithms. This paper proposes an online nonlinear algorithm, which handles the non-convex power demand of electric motors. Therefore, this algorithm allows the simultaneous optimization of speed profile and powertrain operation for electric vehicles with multiple motors and multiple gears. We compare different powertrain topologies in a free-flow scenario and a car-following scenario. Dynamic Programming validates the proposed algorithm. Optimal speed profiles alter for different powertrain topologies. Powertrains with multiple gears and motors require less energy during eco-driving. Furthermore, the powertrain-dependent correlations between jerk restriction and energy consumption are shown.


2020 ◽  
Vol 36 (1) ◽  
pp. 47-58 ◽  
Author(s):  
Dirk Schneider ◽  
Ralf Stark ◽  
Chloé Génin ◽  
Michael Oschwald ◽  
Konstantin Kostyrkin

Author(s):  
Yue Wang ◽  
David Infield ◽  
Simon Gill

This paper assumes a smart grid framework where the driving patterns for electric vehicles are known, time variations in electricity prices are communicated to householders, and data on voltage variation throughout the distribution system are available. Based on this information, an aggregator with access to this data can be employed to minimise electric vehicles charging costs to the owner whilst maintaining acceptable distribution system voltages. In this study, electric vehicle charging is assumed to take place only in the home. A single-phase Low Voltage (LV) distribution network is investigated where the local electric vehicles penetration level is assumed to be 100%. Electric vehicle use patterns have been extracted from the UK Time of Use Survey data with a 10-min resolution and the domestic base load is generated from an existing public domain model. Apart from the so-called real time price signal, which is derived from the electricity system wholesale price, the cost of battery degradation is also considered in the optimal scheduling of electric vehicles charging. A simple and effective heuristic method is proposed to minimise the electric vehicles’ charging cost whilst satisfying the requirement of state of charge for the electric vehicles’ battery. A simulation in OpenDSS over a period of 24 h has been implemented, taking care of the network constraints for voltage level at the customer connection points. The optimisation results are compared with those obtained using dynamic optimal power flow.


Sign in / Sign up

Export Citation Format

Share Document