scholarly journals Switching Characteristics Optimization of Two-Phase Interleaved Bidirectional DC/DC for Electric Vehicles

Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 378 ◽  
Author(s):  
Feng Wang ◽  
Yutao Luo ◽  
Hongluo Li ◽  
Xiaotong Xu

In electric vehicles (EVs), bidirectional DC/DC(Bi-DC/DC) is installed between the battery pack and the DC bus to step up the voltage. In the process of mode switching under step signal, the Bi-DC/DC will be affected by a large current inrush which threatens the safety of the circuit. In this paper, a Bi-DC/DC mode switching method based on the optimized Bézier curve is proposed. The Boost and Buck modes can be switched based on the proposed method with fast and non-overshoot switching performance. The experimental results show that the mode switching can be finished in 4 ms without overshoot based on the optimal switching curve.

2021 ◽  
Vol 11 (15) ◽  
pp. 7057
Author(s):  
Lin Wang ◽  
Zhe Cheng ◽  
Zhi-Guo Yu ◽  
De-Feng Lin ◽  
Zhe Liu ◽  
...  

Half-bridge modules with integrated GaN high electron mobility transistors (HEMTs) and driver dies were designed and fabricated in this research. Our design uses flip-chip technology for fabrication, instead of more generally applied wire bonding, to reduce parasitic inductance in both the driver-gate and drain-source loops. Modules were prepared using both methods and the double-pulse test was applied to evaluate and compare their switching characteristics. The gate voltage (Vgs) waveform of the flip-chip module showed no overshoot during the turn-on period, and a small oscillation during the turn-off period. The probabilities of gate damage and false turn-on were greatly reduced. The inductance in the drain-source loop of the module was measured to be 3.4 nH. The rise and fall times of the drain voltage (Vds) were 12.9 and 5.8 ns, respectively, with an overshoot of only 4.8 V during the turn-off period under Vdc = 100 V. These results indicate that the use of flip-chip technology along with the integration of GaN HEMTs with driver dies can effectively reduce the parasitic inductance and improve the switching performance of GaN half-bridge modules compared to wire bonding.


Author(s):  
E. de Langre ◽  
J. L. Riverin ◽  
M. J. Pettigrew

The time dependent forces resulting from a two-phase air-water mixture flowing in an elbow and a tee are measured. Their magnitudes as well as their spectral contents are analyzed. Comparison is made with previous experimental results on similar systems. For practical applications a dimensionless form is proposed to relate the characteristics of these forces to the parameters defining the flow and the geometry of the piping.


1992 ◽  
Vol 114 (4) ◽  
pp. 965-971 ◽  
Author(s):  
H. Shimaoka ◽  
Y. H. Mori

The evaporation of isolated drops (2.1−3.0 mm diameter) of nonazeotropic n-pentane/n-hexane mixtures in the medium of water was observed under pressures of 0.11−0.46 MPa and temperature differences up to 27 K. The mole fractions of n-pentane, x, in the mixtures were set at 0.9, 0.5, 0.1, and 0, to be completed by the condition x = 1 set in a preceding work (Shimaoka and Mori, 1990). Experimental results are presented in terms of the instantaneous rise velocity of, and an expression of instantaneous heat transfer to, each drop evaporating and thereby transforming into a liquid/vapor two-phase bubble and finally into a vapor bubble. The dependencies of the heat transfer characteristics on the pressure, the temperature difference, and x are discussed.


1986 ◽  
Vol 29 (258) ◽  
pp. 4235-4240
Author(s):  
Terushige FUJII ◽  
Koji AKAGAWA ◽  
Nobuyuki TAKENAKA ◽  
Sadao TSUBOKURA ◽  
Yoichi HIRAOKA ◽  
...  

2016 ◽  
Vol 100 ◽  
pp. 372-380 ◽  
Author(s):  
M. Ziad Saghir ◽  
Amirhossein Ahadi ◽  
Tooraj Yousefi ◽  
Bahram Farahbakhsh

2011 ◽  
Vol 24 (3) ◽  
pp. 165-179 ◽  
Author(s):  
Alessandro Franco ◽  
Sauro Filippeschi

2013 ◽  
Vol 27 (11) ◽  
pp. 1350074 ◽  
Author(s):  
YU-LING JIN ◽  
ZHONG-TANG XU ◽  
KUI-JUAN JIN ◽  
CHEN GE ◽  
HUI-BIN LU ◽  
...  

Mechanism of resistance switching in heterostructure Au / LaMnO 3/ SrNb 0.01 Ti 0.99 O 3 was investigated. In Au / LaMnO 3/ SrNb 0.01 Ti 0.99 O 3 devices the LaMnO 3 films were fabricated under various oxygen pressures. The content of the oxygen vacancies has a significant impact on the resistance switching performance. We propose that the resistance switching characteristics of Au / LaMnO 3/ SrNb 0.01 Ti 0.99 O 3 arise from the modulation of the Au / LaMnO 3 Schottky barrier due to the change of the oxygen vacancy concentration at Au / LaMnO 3 interface under the external electric field. The effect of the oxygen vacancy concentration on the resistance switching is explained based on the self-consistent calculation. Both the experimental and numerical results confirm the important role of the oxygen vacancies in the resistance switching behavior.


Sign in / Sign up

Export Citation Format

Share Document