scholarly journals A Deep Peak Regulation Auxiliary Service Bidding Strategy for CHP Units Based on a Risk-Averse Model and District Heating Network Energy Storage

Energies ◽  
2019 ◽  
Vol 12 (17) ◽  
pp. 3314 ◽  
Author(s):  
Liang Tian ◽  
Yunlei Xie ◽  
Bo Hu ◽  
Xinping Liu ◽  
Tuoyu Deng ◽  
...  

With the advance of China’s power system reform, combined heat and power (CHP) units can participate in multi-energy market. In order to maximize CHP profit in a multi-energy market, a bidding strategy for deep peak regulation auxiliary service of a CHP based on a two-stage stochastic programming risk-averse model and district heating network (DHN) energy storage was proposed. The quotation set of competitors and load uncertainty was modeled with a Latin hypercube sampling (LHS) method. A dynamic queuing method was used to clear the market for the deep peak regulation auxiliary service to determine the bidding capacities of CHPs in the electricity market and the deep peak regulation auxiliary service market, respectively. Finally, the conditional value-at-risk (CVaR) indicator is used to measure the risk brought by the system uncertainty to the CHP, and the quotation coefficient is determined after considering the expected profit and risk profit comprehensively. The results of the example show that the profits produced by simultaneous participation in both electricity market and the deep peak regulation auxiliary service market are increased by approximately 9.5% compared with the profits produced by only participation in a single market. In addition, the use of DHN energy storage led to a profit increase of approximately 4.6%. As the risk aversion coefficient increases, the expected profit will be further reduced.

2018 ◽  
Vol 35 (02) ◽  
pp. 1840008 ◽  
Author(s):  
Chunlin Luo ◽  
Xin Tian ◽  
Xiaobing Mao ◽  
Qiang Cai

This paper addresses the operational decisions and coordination of the supply chain in the presence of risk aversion, where the risk averse retailer’s performance is measured by a combination of the expected profit and conditional value-at-risk (CVaR). Such performance measure reflects the desire of the retailer to maximize the expected profit on one hand and to control the downside risk of the profit on the other hand. The impact of risk aversion on the supply chain’s decision and performance is also explored. To overcome the inefficiency due to the double marginalization and the aggravation resulting from risk aversion, we investigate the buy-back contract to coordinate the supply chain. Such contract can largely increase the supply chain’s profit, especially when the retailer is more risk averse. Lastly, we extend such risk measure to the widely-used business model nowadays — platform selling model, and explore the impact of the allocation rule on the manufacturer’s decision.


2019 ◽  
Vol 36 (02) ◽  
pp. 1940005 ◽  
Author(s):  
Xin-Sheng Xu ◽  
Felix T. S. Chan

To hedge against potential risks, this paper introduces the conditional value-at-risk (CVaR) measure into the option purchasing for the risk-averse retailer with shortage cost. We introduce two models for the risk-averse retailer to select the optimal option purchase quantity. It is found that both two optimal option purchase quantities to two models can be decreasing in the retail price and increasing in the option executing price under certain conditions. This is different from the optimal option purchase quantity for a risk-neutral retailer to maximize the expected profit. It is found that both two optimal option purchase quantities may be increasing or decreasing in the confidence level, which implies a retailer who becomes more risk-averse may purchase more or fewer options to hedge against potential risks. Under both two optimal option purchase quantities, it is proven that the retailer’s expected profit is decreasing in the confidence level. This confirms the fact that high return implies high risk while low risk comes with low return.


2021 ◽  
Author(s):  
Xuecheng Yin ◽  
Esra Buyuktahtakin

Existing compartmental-logistics models in epidemics control are limited in terms of optimizing the allocation of vaccines and treatment resources under a risk-averse objective. In this paper, we present a data-driven, mean-risk, multi-stage, stochastic epidemics-vaccination-logistics model that evaluates various disease growth scenarios under the Conditional Value-at-Risk (CVaR) risk measure to optimize the distribution of treatment centers, resources, and vaccines, while minimizing the total expected number of infections, deaths, and close contacts of infected people under a limited budget. We integrate a new ring vaccination compartment into a Susceptible-Infected-Treated-Recovered-Funeral-Burial epidemics-logistics model. Our formulation involves uncertainty both in the vaccine supply and the disease transmission rate. Here, we also consider the risk of experiencing scenarios that lead to adverse outcomes in terms of the number of infected and dead people due to the epidemic. Combining the risk-neutral objective with a risk measure allows for a trade-off between the weighted expected impact of the outbreak and the expected risks associated with experiencing extremely disastrous scenarios. We incorporate human mobility into the model and develop a new method to estimate the migration rate between each region when data on migration rates is not available. We apply our multi-stage stochastic mixed-integer programming model to the case of controlling the 2018-2020 Ebola Virus Disease (EVD) in the Democratic Republic of the Congo (DRC) using real data. Our results show that increasing the risk-aversion by emphasizing potentially disastrous outbreak scenarios reduces the expected risk related to adverse scenarios at the price of the increased expected number of infections and deaths over all possible scenarios. We also find that isolating and treating infected individuals are the most efficient ways to slow the transmission of the disease, while vaccination is supplementary to primary interventions on reducing the number of infections. Furthermore, our analysis indicates that vaccine acceptance rates affect the optimal vaccine allocation only at the initial stages of the vaccine rollout under a tight vaccine supply.


2021 ◽  
Vol 3 (2) ◽  
Author(s):  
Yi Zheng ◽  
Xiaoqing Bai

AbstractWind power's uncertainty is from the intermittency and fluctuation of wind speed, which brings a great challenge to solving the power system's dynamic economic dispatch problem. With the wind-storage combined system, this paper proposes a dynamic economic dispatch model considering AC optimal power flow based on Conditional Value-at-Risk ($$CVaR$$ CVaR ). Since the proposed model is hard to solve, we use the big-M method and second-order cone description technique to transform it into a trackable mixed-integer second-order conic programming (MISOCP) model. By comparing the dispatching cost of the IEEE 30-bus system and the IEEE 118-bus system at different confidence levels, it is indicated that $$CVaR$$ CVaR method can adequately estimate dispatching risk and assist decision-makers in making reasonable dispatching schedules according to their risk tolerance. Meanwhile, the optimal operational energy storage capacity and initial/final energy storage state can be determined by analyzing the dispatching cost risk under different storage capacities and initial/final states.


2016 ◽  
Vol 78 (10) ◽  
Author(s):  
M. T. Askari ◽  
Z. Afzalipor ◽  
A. Amoozadeh

In a deregulated power market, generation companies attempt to maximize their profits and minimize their risks. This paper proposes a risk model for bidding strategy of generation companies based on EVT-CVaR method. Extreme Value Theory can overcome shortcomings of traditional methods in computing financial risk based on value-at-risk and conditional value-at-risk method. Also, generalized Pareto distribution is suggested to model tail of an unknown distribution and parameters of the GPD are estimated by likelihood moment method. Numerical results for risk assessment using the proposed approach are presented for IEEE 30-bus test system. According to the findings, this method can be used as a robust technique to calculate the risk for bidding strategy of generation companies.


Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2249 ◽  
Author(s):  
Emanuel Canelas ◽  
Tânia Pinto-Varela ◽  
Bartosz Sawik

Electricity markets are nowadays flooded with uncertainties that rise from renewable energy applications, technological development, and fossil fuel prices fluctuation, among others. These aspects result in a lumpy electricity prices for consumers, making it necessary to come up with risk management tools to help them hedge this associated risk. In this work a portfolio optimization applied to electricity sector, is proposed. A mixed integer programming model is presented to characterize the electricity portfolio of large consumers. The energy sources available for the portfolio characterization are the day-ahead spot market, forward contracts, and self-generation. The study novelty highlights the energy portfolio characterization for players denoted as large consumers, which has been overlooked by the scientific community and, focuses on the Iberian electricity market as a real case study. A multi-objective methodology is explored, using a weighted-sum approach. The expected cost and the conditional value-at-risk (CVaR) minimization are used as objective function. Three case studies illustrate the model applicability through the characterization of how the portfolio evolves with different demand profiles and how to take advantage from seasonality characteristic in the spot market. A scenario analysis is explored to reflect the uncertainty on the price of the spot market. The expected cost and CVaR are optimized for each case study and the portfolio analysis for each risk posture is characterized. The results illustrate the advantage to reduce costs and risk if the prices seasonality is considered, triggering to an adaptive seasonal behavior, which support the decision-maker decision towards its goals.


Sign in / Sign up

Export Citation Format

Share Document