scholarly journals Revision of Threshold Luminance Levels in Tunnels Aiming to Minimize Energy Consumption at No Cost: Methodology and Case Studies

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1707 ◽  
Author(s):  
Lambros T. Doulos ◽  
Ioannis Sioutis ◽  
Aris Tsangrassoulis ◽  
Laurent Canale ◽  
Kostantinos Faidas

Because of the absence of lighting calculation tools at the initial stage of tunnel design, the lighting systems are usually over-dimensioned, leading to over illumination and increased energy consumption. For this reason, a fine-tuning method for switching lighting stages according to the traffic weighted L20 luminance is proposed at no additional cost. The method was applied in a real –case scenario, where L20 luminance of the access zone at eleven (11) existing tunnels was calculated. The traffic weighted method of CR14380 was used in order to calculate the actual luminance levels for the entrance zone. The new transition zone, which decreases luminance curves, was produced and compared with the existing ones. Thus, a new switching control was proposed and programed for the Supervisory Control and Data Acquisition (SCADA) system of the tunnel. The signals of the corresponding eleven L20 meters for a period of eight days were used and the corresponding annual energy consumptions were calculated using the proposed switching program for each tunnel. The results were compared with a number of scenarios in which the existing lighting system was retrofitted with Lighting Emitting Diodes (LED) luminaires. In these scenarios, the new luminaire arrangement was based not only on the existing luminance demand value for the threshold zone, but also on the newly proposed one with two different control techniques (continuous dimming and 10% step dimming). The fine-tuning method for switching resulted in energy savings between 11% and 54% depending on the tunnel when the scenario of the existing installation at no extra cost was used. Energy savings, when LED luminaires were installed, varied between 57% (for the scenario with existing luminance demand value for the threshold zone and 10% step dimming) and 85% (for the scenario with the new calculated luminance demand and continuous dimming).

Author(s):  
Elena Giacone ◽  
Salvatore Manco` ◽  
Pietro Gabriele

Energy management in the industrial context is an important factor to attain energy savings as well as environmental efficiency. In fact, if every single factory could achieve some even relatively small improvements, considerable progress in a countrywide dimension would be made. The purpose of this paper is to show how energy management can be introduced in small and medium-sized enterprises (SMEs). Even if, in general, only data about the system as a whole are available, it is enough to begin an analysis leading to the knowledge of the laws relating energy consumption (electricity and fuels) and energy drivers (production, weather, etc.). Statistical process control techniques are the tools that have been applied.


Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3169 ◽  
Author(s):  
Natthanon Phannil ◽  
Chaiyan Jettanasen ◽  
Atthapol Ngaopitakkul

This paper proposes the study and analysis of harmonics, energy consumption and power quality of light emitting diode (LED) lamps equipped in building lighting systems. LED lamps with external (LED MR16) and internal (LED light bulb) drivers are investigated using an experimental setup to compare the results. The power quality of both LED lamps is studied by using a power quality meter to measure the generated harmonic currents from various case studies. The case study is divided into four major cases: one LED lamp is turned on with one driver, two LED lamps are turned on using the two drivers, eight LED lamps are turned on with one driver, and eight LED lamps are turned on with the eight drivers. As harmonics are related to total power factor (PF), which affects the energy savings of the building, hence, a filtering circuit to reduce harmonic current has been designed and implemented to improve power quality and/or power factor of the system. The different cases of harmonic filter insertion at the input of an LED lamp’s driver are discussed and then compared with a lighting standard to show the effectiveness of the passive filtering technique used in the studied system. In addition, the obtained result can be applied to both newly built and retrofitted buildings that aim to use LED technology to increase energy efficiency and decrease energy costs, and could be a helpful guide for end-users and manufacturers in addressing and developing LED issues.


2021 ◽  
Vol 4 (1) ◽  
pp. 71-80
Author(s):  
Isty Cahyani Ismail ◽  
Ramli Rahim ◽  
Baharuddin Hamzah

One of the largest energy consumers in the world is buildings. The energy consumption comes from the lighting system. Energy use in buildings is generally 25% for lighting systems. The strategy used in building design is to reduce energy consumption while maintaining the best comfort in a building. The application of energy-saving concepts from the building sector is optimizing the lighting system by integrating natural and artificial lighting systems. This study aims to determine the light intensity in the integrated lighting system of natural and artificial manually and also to find out how much energy can be saved with the integrated lighting system manually. The research location is at the Mega Bank Makassar Tower Building. The research sample was selected by purposive sampling and the sixth floor was chosen as the research location. In this study, simulations were carried out using the DIAlux 4.13 program to integrate natural and artificial light and to calculate the amount of energy efficiency in the workspace. To obtain optimal light intensity and energy savings, a simulation was carried out by turning off half the light points in the workspace, especially the light points around the building openings. The simulation results show that the average integrated lighting quality meets the minimum lighting requirements and can save energy usage by up to 50%. Keywords: energy efficiency; integration lighting; workspace


2017 ◽  
Vol 76 (8) ◽  
pp. 2222-2231 ◽  
Author(s):  
Jun-Jie Zhu ◽  
Paul R. Anderson

Aeration accounts for a large fraction of energy consumption at conventional water reclamation plants (WRPs). Older plants were designed when control techniques were relatively primitive and energy consumption was less of a concern. As a result, although process operations at older WRPs can satisfy effluent permit requirements, they can operate with excess aeration. In this study, we developed a wastewater process model to evaluate possible aeration savings at the Metropolitan Water Reclamation District of Greater Chicago Calumet WRP, one of the oldest plants in Chicago. Based on subsets of influent characteristics, we identified eight steady-state scenarios. We also identified transient scenarios that included high probability perturbations and more challenging but lower probability conditions. Results indicate that the Calumet WRP frequently operates with excess aeration. Effluent dissolved oxygen is the limiting parameter with respect to aeration saving and permit requirements. In a typical storm event, aeration could be reduced by up to 50%; even under low probability challenging perturbations, aeration can be decreased by 35% from current average levels and all permit requirements can be satisfied. Annual cost savings from cutting the aeration by 35% could be more than $1.2 million.


2012 ◽  
Vol 9 (2) ◽  
pp. 65
Author(s):  
Alhassan Salami Tijani ◽  
Nazri Mohammed ◽  
Werner Witt

Industrial heat pumps are heat-recovery systems that allow the temperature ofwaste-heat stream to be increased to a higher, more efficient temperature. Consequently, heat pumps can improve energy efficiency in industrial processes as well as energy savings when conventional passive-heat recovery is not possible. In this paper, possible ways of saving energy in the chemical industry are considered, the objective is to reduce the primary energy (such as coal) consumption of power plant. Particularly the thermodynamic analyses ofintegrating backpressure turbine ofa power plant with distillation units have been considered. Some practical examples such as conventional distillation unit and heat pump are used as a means of reducing primary energy consumption with tangible indications of energy savings. The heat pump distillation is operated via electrical power from the power plant. The exergy efficiency ofthe primary fuel is calculated for different operating range ofthe heat pump distillation. This is then compared with a conventional distillation unit that depends on saturated steam from a power plant as the source of energy. The results obtained show that heat pump distillation is an economic way to save energy if the temperaturedifference between the overhead and the bottom is small. Based on the result, the energy saved by the application of a heat pump distillation is improved compared to conventional distillation unit.


2012 ◽  
Vol 7 (4) ◽  
Author(s):  
A. Lazić ◽  
V. Larsson ◽  
Å. Nordenborg

The objective of this work is to decrease energy consumption of the aeration system at a mid-size conventional wastewater treatment plant in the south of Sweden where aeration consumes 44% of the total energy consumption of the plant. By designing an energy optimised aeration system (with aeration grids, blowers, controlling valves) and then operating it with a new aeration control system (dissolved oxygen cascade control and most open valve logic) one can save energy. The concept has been tested in full scale by comparing two treatment lines: a reference line (consisting of old fine bubble tube diffusers, old lobe blowers, simple DO control) with a test line (consisting of new Sanitaire Silver Series Low Pressure fine bubble diffusers, a new screw blower and the Flygt aeration control system). Energy savings with the new aeration system measured as Aeration Efficiency was 65%. Furthermore, 13% of the total energy consumption of the whole plant, or 21 000 €/year, could be saved when the tested line was operated with the new aeration system.


2021 ◽  
Vol 11 (6) ◽  
pp. 2735
Author(s):  
Ernesto Olvera-Gonzalez ◽  
Martín Montes Rivera ◽  
Nivia Escalante-Garcia ◽  
Eduardo Flores-Gallegos

Artificial lighting is a key factor in Closed Production Plant Systems (CPPS). A significant light-emitting diode (LED) technology attribute is the emission of different wavelengths, called light recipes. Light recipes are typically configured in continuous mode, but can also be configured in pulsed mode to save energy. We propose two nonlinear models, i.e., genetic programing (GP) and feedforward artificial neural networks (FNNs) to predict energy consumption in CPPS. The generated models use the following input variables: intensity, red light component, blue light component, green light component, and white light component; and the following operation modes: continuous and pulsed light including pulsed frequency, and duty cycle as well energy consumption as output. A Spearman's correlation was applied to generate a model with only representative inputs. Two datasets were applied. The first (Test 1), with 5700 samples with similar input ranges, was used to train and evaluate, while the second (Test 2), included 160 total datapoints in different input ranges. The metrics that allowed a quantitative evaluation of the model's performance were MAPE, MSE, MAE, and SEE. Our implemented models achieved an accuracy of 96.1% for the GP model and 98.99% for the FNNs model. The models used in this proposal can be applied or programmed as part of the monitoring system for CPPS which prioritize energy efficiency. The nonlinear models provide a further analysis for energy savings due to the light recipe and operation light mode, i.e., pulsed and continuous on artificial LED lighting systems.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3876
Author(s):  
Sameh Monna ◽  
Adel Juaidi ◽  
Ramez Abdallah ◽  
Aiman Albatayneh ◽  
Patrick Dutournie ◽  
...  

Since buildings are one of the major contributors to global warming, efforts should be intensified to make them more energy-efficient, particularly existing buildings. This research intends to analyze the energy savings from a suggested retrofitting program using energy simulation for typical existing residential buildings. For the assessment of the energy retrofitting program using computer simulation, the most commonly utilized residential building types were selected. The energy consumption of those selected residential buildings was assessed, and a baseline for evaluating energy retrofitting was established. Three levels of retrofitting programs were implemented. These levels were ordered by cost, with the first level being the least costly and the third level is the most expensive. The simulation models were created for two different types of buildings in three different climatic zones in Palestine. The findings suggest that water heating, space heating, space cooling, and electric lighting are the highest energy consumers in ordinary houses. Level one measures resulted in a 19–24 percent decrease in energy consumption due to reduced heating and cooling loads. The use of a combination of levels one and two resulted in a decrease of energy consumption for heating, cooling, and lighting by 50–57%. The use of the three levels resulted in a decrease of 71–80% in total energy usage for heating, cooling, lighting, water heating, and air conditioning.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 960
Author(s):  
Jenny Manuela Tabbert ◽  
Hartwig Schulz ◽  
Andrea Krähmer

A light-emitting diode (LED) system covering plant-receptive wavebands from ultraviolet to far-red radiation (360 to 760 nm, “white” light spectrum) was investigated for greenhouse productions of Thymus vulgaris L. Biomass yields and amounts of terpenoids were examined, and the lights’ productivity and electrical efficiency were determined. All results were compared to two conventionally used light fixture types (high-pressure sodium lamps (HPS) and fluorescent lights (FL)) under naturally low irradiation conditions during fall and winter in Berlin, Germany. Under LED, development of Thymus vulgaris L. was highly accelerated resulting in distinct fresh yield increases per square meter by 43% and 82.4% compared to HPS and FL, respectively. Dry yields per square meter also increased by 43.1% and 88.6% under LED compared to the HPS and FL lighting systems. While composition of terpenoids remained unaffected, their quantity per gram of leaf dry matter significantly increased under LED and HPS as compared to FL. Further, the power consumption calculations revealed energy savings of 31.3% and 20.1% for LED and FL, respectively, compared to HPS. In conclusion, the implementation of a broad-spectrum LED system has tremendous potential for increasing quantity and quality of Thymus vulgaris L. during naturally insufficient light conditions while significantly reducing energy consumption.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3912
Author(s):  
Wassim Salameh ◽  
Jalal Faraj ◽  
Elias Harika ◽  
Rabih Murr ◽  
Mahmoud Khaled

In the context of a world energy crisis, the only solution to control the situation is in the management of energy. One of the most important management keys is the optimization of electrical components. This article presents a complete numerical and experimental study aiming for the optimization of electrical water heaters for household use. The optimization conceives the minimization of energy consumption simultaneously with the minimization of time to heat water. Firstly, a thermal model well adapted for the case of heaters is constructed and validated experimentally and then a parametric study is conducted covering all the input power, the volume and the external area of the heater. Results are promising, showing significant energy savings are possible with an optimum setting of these parameters, thus presenting a firm tool for the optimization of heaters.


Sign in / Sign up

Export Citation Format

Share Document