scholarly journals Evaluating the Potential of Rhodosporidium toruloides-1588 for High Lipid Production Using Undetoxified Wood Hydrolysate as a Carbon Source

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5960
Author(s):  
Rahul Saini ◽  
Krishnamoorthy Hegde ◽  
Carlos Saul Osorio-Gonzalez ◽  
Satinder Kaur Brar ◽  
Pierre Vezina

The study aims to explore microbial lipid production using an abundant and low-cost lignocellulosic biomass derived from forestry residues. Sugar-rich undetoxified hydrolysate was prepared using hardwood and softwood sawdust and used for lipid production as a carbon source from an oleaginous yeast, Rhodosporidium toruloides-1588. The maximum biomass obtained was 17.09 and 19.56 g/L in hardwood and softwood hydrolysate, respectively. Sugar consumption in both hydrolysates was >95%, with a maximum lipid accumulation of 36.68% at 104 h and 35.24% at 96 h. Moreover, R. toruloides-1588 exhibited tolerance to several toxic compounds such as phenols, organic acids and furans present in hydrolysates. The lipid characterization showed several monosaturated and polyunsaturated fatty acids, making it a potential feedstock for biofuels and oleochemicals production. This study confirms the credibility of R. toruloides-1588 as a suitable lipid producer using hydrolysates from forestry residues as a substrate. Additionally, lipids obtained from R. toruloides-1588 could be a potential feedstock for advanced biofuel production as well as for food and pharmaceutical applications.

2020 ◽  
Vol 82 (6) ◽  
pp. 1120-1130
Author(s):  
H. J. Choi

Abstract As a byproduct of agriculture, rice bran can be a good alternative carbon source to mass-produce microalgae and increase lipid content. The purpose of this study was to investigate the effects of rice bran extract (RBE) on the mass culture and oil content of microalgae. Various parameters were applied to the growth rate model to explain the dynamics of substrate inhibition and growth of microalgae. The rice bran contains 46.1% of carbohydrates, in which is 38.3% glucose, and is very suitable as a carbon source for microalgae growth. The culture with RBE had a four times higher biomass production than microalgae cultured on Jaworski's medium (JM) with a small amount of 1 g/L. In addition, for RBE, the lipid content was three times higher and saturated fatty acid was 3% lower than were those of JM. According to the above results, when Chlorella vulgaris is cultured using RBE, a high amount of biomass and high lipid content can be obtained with a small amount of RBE. RBE is a discarded waste and has a high content of glucose, so it can be replaced by an organic carbon source to increase microbial biomass growth and lipid content at low cost.


2019 ◽  
Vol 130 ◽  
pp. 105355 ◽  
Author(s):  
Carlos S. Osorio-González ◽  
Krishnamoorthy Hegde ◽  
Pedro Ferreira ◽  
Satinder Kaur Brar ◽  
Azadeh Kermanshahipour ◽  
...  

INCREaSE ◽  
2018 ◽  
pp. 103-116
Author(s):  
Valdemira Afonso ◽  
Laura Tangerino ◽  
Daiana Oliveira ◽  
Sara Raposo

2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Hossein Alishah Aratboni ◽  
Nahid Rafiei ◽  
Raul Garcia-Granados ◽  
Abbas Alemzadeh ◽  
José Rubén Morones-Ramírez

Abstract The use of fossil fuels has been strongly related to critical problems currently affecting society, such as: global warming, global greenhouse effects and pollution. These problems have affected the homeostasis of living organisms worldwide at an alarming rate. Due to this, it is imperative to look for alternatives to the use of fossil fuels and one of the relevant substitutes are biofuels. There are different types of biofuels (categories and generations) that have been previously explored, but recently, the use of microalgae has been strongly considered for the production of biofuels since they present a series of advantages over other biofuel production sources: (a) they don’t need arable land to grow and therefore do not compete with food crops (like biofuels produced from corn, sugar cane and other plants) and; (b) they exhibit rapid biomass production containing high oil contents, at least 15 to 20 times higher than land based oleaginous crops. Hence, these unicellular photosynthetic microorganisms have received great attention from researches to use them in the large-scale production of biofuels. However, one disadvantage of using microalgae is the high economic cost due to the low-yields of lipid content in the microalgae biomass. Thus, development of different methods to enhance microalgae biomass, as well as lipid content in the microalgae cells, would lead to the development of a sustainable low-cost process to produce biofuels. Within the last 10 years, many studies have reported different methods and strategies to induce lipid production to obtain higher lipid accumulation in the biomass of microalgae cells; however, there is not a comprehensive review in the literature that highlights, compares and discusses these strategies. Here, we review these strategies which include modulating light intensity in cultures, controlling and varying CO2 levels and temperature, inducing nutrient starvation in the culture, the implementation of stress by incorporating heavy metal or inducing a high salinity condition, and the use of metabolic and genetic engineering techniques coupled with nanotechnology.


2021 ◽  
Vol 4 (1) ◽  
pp. 41
Author(s):  
Cynthia M. Galicia-Medina ◽  
Matías Vázquez-Piñón ◽  
Sergio Camacho-León ◽  
Gibran S. Alemán-Nava ◽  
Roberto C. Gallo-Villanueva ◽  
...  

The use of microalgae as a biomass source for biofuel production has drawn the attention of many scientists due to several associated environmental advantages over conventional terrestrial crops, including microalgae growing using wastewaters and a higher CO2 fixation rate, contributing to the reduction of atmospheric concentration. Consequently, a reliable cytoplasmic lipid screening process in microalgae is a valuable asset for harvesting optimization in mass production processes. In this study, the heterogeneous cytoplasmic lipid content of Neochloris oleoabundans was dielectrophoretically assorted in a microfluidic device using castellated carbon microelectrodes. The experiments carried out over a wide frequency window (100 kHz to 30 MHz) at a fixed amplitude of 7 VPP showed a significant contrast between the dielectrophoretic behavior of high lipid content and low lipid content cells at the low frequency range (100–800 kHz). A weak response for the mid and high frequency ranges (1–30 MHz) was also identified for high and low lipid content samples, allowing one to establish an electrokinetic footprint of the studied strain. These results suggest that the development of a reliable screening process for harvesting optimization is possible through a fast and straightforward mechanism, such as dielectrophoresis, which is a low-cost and easy-to-machine material that employs glassy carbon. The experimental setup in this study involved in vitro culturing of nitrogen-replete (N+) and nitrogen-deplete (N-) cell suspensions to promote low and high lipid production in cells, respectively. Cell populations were monitored using spectrophotometry, and the resulting lipid development among cells was quantified by Nile red fluorescence.


2017 ◽  
Vol 114 (27) ◽  
pp. E5308-E5316 ◽  
Author(s):  
Jingyang Xu ◽  
Nian Liu ◽  
Kangjian Qiao ◽  
Sebastian Vogg ◽  
Gregory Stephanopoulos

Acetic acid can be generated through syngas fermentation, lignocellulosic biomass degradation, and organic waste anaerobic digestion. Microbial conversion of acetate into triacylglycerols for biofuel production has many advantages, including low-cost or even negative-cost feedstock and environmental benefits. The main issue stems from the dilute nature of acetate produced in such systems, which is costly to be processed on an industrial scale. To tackle this problem, we established an efficient bioprocess for converting dilute acetate into lipids, using the oleaginous yeast Yarrowia lipolytica in a semicontinuous system. The implemented design used low-strength acetic acid in both salt and acid forms as carbon substrate and a cross-filtration module for cell recycling. Feed controls for acetic acid and nitrogen based on metabolic models and online measurement of the respiratory quotient were used. The optimized process was able to sustain high-density cell culture using acetic acid of only 3% and achieved a lipid titer, yield, and productivity of 115 g/L, 0.16 g/g, and 0.8 g⋅L−1⋅h−1, respectively. No carbon substrate was detected in the effluent stream, indicating complete utilization of acetate. These results represent a more than twofold increase in lipid production metrics compared with the current best-performing results using concentrated acetic acid as carbon feed.


2014 ◽  
Vol 158 ◽  
pp. 355-359 ◽  
Author(s):  
Cláudia Freitas ◽  
Teresa Margarida Parreira ◽  
José Roseiro ◽  
Alberto Reis ◽  
Teresa Lopes da Silva

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1576 ◽  
Author(s):  
Qiang Li ◽  
Rasool Kamal ◽  
Qian Wang ◽  
Xue Yu ◽  
Zongbao Kent Zhao

Microbial lipids have been considered as promising resources for the production of renewable biofuels and oleochemicals. Various feedstocks, including sugars, crude glycerol, and volatile fatty acids, have been used as substrates for microbial lipid production, yet amino acid (AA) wastes remain to be evaluated. Here, we describe the potential to use AA wastes for lipid production with a two-stage culture mode by an oleaginous yeast strain Rhodosporidium toruloides CGMCC 2.1389. Each of the 20 proteinogenic AAs was evaluated individually as sole carbon source, with 8 showing capability to facilitate cellular lipid contents of more than 20%. It was found that L-proline was the most favored AA, with which cells accumulated lipids to a cellular lipid content of 37.3%. When blends with AA profiles corresponding to those of meat industry by-products and sheep viscera were used, the cellular lipid contents reached 27.0% and 28.7%, respectively. The fatty acid compositional analysis of these lipid products revealed similar profiles to those of vegetable oils. These results, thus, demonstrate a potential route to convert AA wastes into lipids, which is of great importance for waste management and biofuel production.


Sign in / Sign up

Export Citation Format

Share Document